Aim. It can help improve the hospital throughput to accelerate magnetic resonance imaging (MRI) scanning. Patients will benefit from less waiting time. Task. In the last decade, various rapid MRI techniques on the basis of compressed sensing (CS) were proposed. However, both computation time and reconstruction quality of traditional CS-MRI did not meet the requirement of clinical use. Method. In this study, a novel method was proposed with the name of exponential wavelet iterative shrinkage-thresholding algorithm with random shift (abbreviated as EWISTARS). It is composed of three successful components: (i) exponential wavelet transform, (ii) iterative shrinkage-thresholding algorithm, and (iii) random shift. Results. Experimental results validated that, compared to state-of-the-art approaches, EWISTARS obtained the least mean absolute error, the least mean-squared error, and the highest peak signal-to-noise ratio. Conclusion. EWISTARS is superior to state-of-the-art approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4811091PMC
http://dx.doi.org/10.1155/2016/9416435DOI Listing

Publication Analysis

Top Keywords

exponential wavelet
12
iterative shrinkage-thresholding
12
shrinkage-thresholding algorithm
12
random shift
12
compressed sensing
8
magnetic resonance
8
resonance imaging
8
wavelet iterative
8
algorithm random
8
state-of-the-art approaches
8

Similar Publications

Fourier analysis of signal dependent noise images.

Sci Rep

December 2024

Cancer Epidemiology Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Bruce B. Downs Blvd, Tampa, FL, 33612, USA.

An archetype signal dependent noise (SDN) model is a component used in analyzing images or signals acquired from different technologies. This model-component may share properties with stationary normal white noise (WN). Measurements from WN images were used as standards for making comparisons with SDN in both the image domain (ID) and Fourier domain (FD).

View Article and Find Full Text PDF

A Gaussian Process Regression and Wavelet Transform Time Series approaches to modeling Influenza A.

Comput Biol Med

January 2025

School of Mathematical and Statistical Science, College of Sciences, University of Texas Rio Grande Valley, USA; Department of Statistics and Actuarial Science, College of Basic and Applied Sciences, University of Ghana, Ghana; Department of Computer Science, Ashesi University, No. 1 University Avenue, Berekuso, Eastern Region, Ghana. Electronic address:

The global spread of Influenza A viruses is worsening economic and social challenges. Various mechanistic models have been developed to understand the virus's spread and evaluate intervention effectiveness. This study aimed to model the temporal dynamics of Influenza A using Gaussian Process Regression (GPR) and wavelet transform approaches.

View Article and Find Full Text PDF

The classification of ECG signals is a critical process because it guides the diagnosis of the proper treatment process for the patient. However, any form of disturbance with ECG signals can be highly conspicuous because of the mechanics involved in data acquisition from living beings, which has a significant impact on the classification procedure. The purpose of this research work is to advance ECG signal classification results by employing numerous denoising methods and, in turn, boost the accuracy of cardiovascular diagnoses.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on using radiomic features from contrast-enhanced CT scans to distinguish between osteoradionecrosis (ORN) and normal mandibular bone in head and neck cancer patients treated with radiotherapy.
  • Data from 150 patients was analyzed, with feature extraction performed using PyRadiomics and a Random Forest classifier used to identify key features, resulting in an accuracy of 88%.
  • The findings highlight specific radiomic features that can differentiate ORN from healthy tissue, paving the way for future research on early detection and intervention strategies.
View Article and Find Full Text PDF

This paper presents the results of a study of the characteristics of phase synchronization between electrocardiography(ECG) and electroencephalography (EEG) signals during night sleep. Polysomnographic recordings of eight generally healthy subjects and eight patients with obstructive sleep apnea syndrome were selected as experimental data. A feature of this study was the introduction of an instantaneous phase for EEG and ECG signals using a continuous wavelet transform at the heart rate frequency using the concept of time scale synchronization, which eliminated the emergence of asynchronous areas of behavior associated with the "leaving" of the fundamental frequency of the cardiovascular system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!