Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Doubled haploid plants are invaluable breeding tools but many crop species are recalcitrant to available haploid induction techniques. To test if haploid inducer lines can be engineered into crops, CENH3 (-∕-) and CENH3:RNAi lines were complemented by AcGREEN-tailswap-CENH3 or AcGREEN-CENH3 transgenes. Haploid induction rates were determined following testcrosses to wild-type plants after independently controlling for inducer parent sex and transgene zygosity. CENH3 fusion proteins were localized to centromeres and did not cause vegetative defects or male sterility. CENH3:RNAi lines did not demonstrate consistent knockdown and rarely produced haploids. In contrast, many of the complemented CENH3 (-∕-) lines produced haploids at low frequencies. The rate of gynogenic haploid induction reached a maximum of 3.6% in several hemizygous individuals when backcrossed as males. These results demonstrate that CENH3-tailswap transgenes can be used to engineer in vivo haploid induction systems into maize plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814585 | PMC |
http://dx.doi.org/10.3389/fpls.2016.00414 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!