Grapevine (Vitis vinifera L.) is one of the most important fruit crop worldwide. Commercial cultivars are greatly affected by a large number of pathogenic microorganisms that cause diseases during pre- and/or post-harvest periods, affecting production, processing and export, along with fruit quality. Among the potential threats, we can find bacteria, fungi, oomycete, or viruses with different life cycles, infection mechanisms and evasion strategies. While plant-pathogen interactions are cycles of resistance and susceptibility, resistance traits from natural resources are selected and may be used for breeding purposes and for a sustainable agriculture. In this context, here we summarize some of the most important diseases affecting V. vinifera together with their causal agents. The aim of this work is to bring a comprehensive review of the infection strategies deployed by significant types of pathogens while understanding the host response in both resistance and susceptibility scenarios. New approaches being used to uncover grapevine status during biotic stresses and scientific-based procedures needed to control plant diseases and crop protection are also addressed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4811896 | PMC |
http://dx.doi.org/10.3389/fpls.2016.00382 | DOI Listing |
Front Vet Sci
December 2024
Department of Pathobiology Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
The external ear canal, characterized by species-specific structural and physiological differences, maintains a hostile environment that prevents microbial overgrowth and foreign body entry, supported by factors such as temperature, pH, humidity, and cerumen with antimicrobial properties. This review combines several studies on the healthy ear canal's structure and physiology with a critical approach to the potential existence of an ear microbiome. We use a comparative multi-species approach to explore how allergic conditions alter the ear canal microenvironment and cerumen in different mammalian species, promoting pathogen colonization.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
December 2024
Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia.
Since infections associated with microbial communities threaten human health, research is increasingly focusing on the development of biofilms and strategies to combat them. Bacterial communities may include bacteria of one or several species. Therefore, examining all the microbes and identifying individual community bacteria responsible for the infectious process is important.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Experimental Medicine, University of Salento, Lecce, Italy.
Probiotics, defined as viable microorganisms that enhance host health when consumed through the diet, exert their effects through mechanisms such as strengthening the immune system, enhancing resistance to infectious diseases, and improving tolerance to stressful conditions. Driven by a growing market, research on probiotics in aquaculture is a burgeoning field. However, the identification of new probiotics presents a complex challenge, necessitating careful consideration of both the safety and efficacy of the microorganisms employed.
View Article and Find Full Text PDFFront Microbiol
December 2024
Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.
Pyroptosis, also known as inflammatory necrosis, is a form of programmed cell death characterized by the activation of gasdermin proteins, leading to the formation of pores in the cell membrane, continuous cell swelling, and eventual membrane rupture. This process results in the release of intracellular contents, including pro-inflammatory cytokines like IL-1β and IL-18, which subsequently trigger a robust inflammatory response. This process is a crucial component of the body's innate immune response and plays a significant role in combating infections.
View Article and Find Full Text PDFInt J Pharm
December 2024
Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR, 5007 Villeurbanne, France.
The antimicrobial and antibiofilm properties of plant essential oils (EOs) have aroused significant interest for their potential as effective alternatives or supplements in combating microbial infections and biofilm-associated challenges. For these applications, EOs must be encapsulated to overcome some key technical limitations, including high volatility, poor stability, and low solubility. This study aimed to develop microencapsulated EOs derived from two valuable Moroccan medicinal plants, Lavandula stoechas L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!