[Purpose] This study aimed to compare dynamic balance ability according to foot shape, defined as normal, pronated, or supinated on the basis of the height of the medial arch. [Subjects] In this study, 14 subjects for the pronated foot group, 14 for the supinated foot group, and 14 for the normal foot group were selected from among 162 healthy university students by using the navicular drop test proposed by Brody. To measure dynamic balance ability, a star excursion balance test (SEBT) was conducted for each group, in which a cross-shaped line and lines at 45° in eight directions were drawn on the floor. In this study, only three directions were used, namely anterior, posterolateral, and posteromedial. The mean of the SEBT was calculated by measuring three times for each group, and the values were standardized using the following equation: measured value/leg length × 100. [Results] No significant differences in dynamic balance ability were found between the normal, pronated, and supinated foot groups. [Conclusion] No significant differences in dynamic balance ability according to the foot shape were found among the healthy university students with normal, pronated, and supinated feet.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4793029 | PMC |
http://dx.doi.org/10.1589/jpts.28.661 | DOI Listing |
Sci Rep
December 2024
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Kyiv, Ukraine.
The integration of Electric Vehicles (EVs) into power grids introduces several critical challenges, such as limited scalability, inefficiencies in real-time demand management, and significant data privacy and security vulnerabilities within centralized architectures. Furthermore, the increasing demand for decentralized systems necessitates robust solutions to handle the growing volume of EVs while ensuring grid stability and optimizing energy utilization. To address these challenges, this paper presents the Demand Response and Load Balancing using Artificial intelligence (DR-LB-AI) framework.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neuroscience and Padova Neuroscience Center, Università di Padova, Padova, Italy.
Can focal brain lesions, such as those caused by stroke, disrupt critical brain dynamics? What biological mechanisms drive its recovery? In a recent study, we showed that focal lesions generate a sub-critical state that recovers over time in parallel with behavior (Rocha et al., Nat. Commun.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical Engineering, College of Engineering, Qassim University, Buraidah, 52571, Saudi Arabia.
Unbalanced power systems cause transformers and generators to overheat, system losses to climb, and protective devices to trigger. An optimization-based control technique for distributed generators (DG) balances demand and improves power quality in three imbalanced distribution systems with 10, 13, and 37 nodes. Each system phase has its own DG.
View Article and Find Full Text PDFBAY 2413555 is a novel selective and reversible positive allosteric modulator of the type 2 muscarinic acetylcholine (M2) receptor, aimed at enhancing parasympathetic signaling and restoring cardiac autonomic balance for the treatment of heart failure (HF). This study tested the safety, tolerability and pharmacokinetics of this novel therapeutic option. REMOTE-HF was a multicenter, double-blind, randomized, placebo-controlled, phase Ib dose-titration study with two active arms.
View Article and Find Full Text PDFSci Rep
December 2024
BAOBAB Unit, NeuroSpin center, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
Decoding states of consciousness from brain activity is a central challenge in neuroscience. Dynamic functional connectivity (dFC) allows the study of short-term temporal changes in functional connectivity (FC) between distributed brain areas. By clustering dFC matrices from resting-state fMRI, we previously described "brain patterns" that underlie different functional configurations of the brain at rest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!