Paricalcitol Attenuates Cardiac Fibrosis and Expression of Endothelial Cell Transition Markers in Isoproterenol-Induced Cardiomyopathic Rats.

Crit Care Med

1Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.2Cardiovascular Center, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.3Department of Cardiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.4School of Medicine, National Yang-Ming University, Taipei, Taiwan.5Department of Administration, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.6Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.7Institute of Clinical Medicine, National Cheng-Kung University, Tainan, Taiwan.8Genomics Research Center, Academia Sinica, Taipei, Taiwan.9Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.10Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.11Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.

Published: September 2016

Objectives: Acute cardiomyopathy is a health problem worldwide. Few studies have shown an association between acute cardiomyopathy and low vitamin D status. Paricalcitol, a vitamin D receptor activator, clinically benefits patients with advanced kidney disease. The effect of paricalcitol supplement on cardiac remodeling in cardiomyopathic rats is unknown. This experimental study investigated the effect of paricalcitol in rats with cardiomyopathy induced by isoproterenol.

Design: Prospective, randomized, controlled experimental study.

Setting: Hospital-affiliated animal research institution.

Subjects: Eight-week-old male Wistar-Kyoto rats.

Interventions: Male Wistar-Kyoto rats were first injected intraperitoneally with isoproterenol to create a rat model of acute cardiomyopathy. Then paricalcitol was administered intraperitoneally to isoproterenol-injected rats at a dosage of 200 ng three times a week for 3 weeks. Relevant cardiomyopathy-related variables were measured regularly in three groups of rats, controls, isoproterenol, and isoproterenol plus paricalcitol. Rat hearts were obtained for evaluation of cardiac fibrosis using Masson trichrome staining and commercially available software, and evaluation of cell transition using immunofluorescence staining analysis.

Measurements And Main Results: Isoproterenol infusions generated significant cardiac fibrosis (p < 0.001). Subsequent paricalcitol treatment attenuated the isoproterenol-induced cardiac fibrosis (p = 0.006). Fluorescence showed colocalization of endothelial and fibroblast cell markers (cluster differentiation 31 and α-smooth muscle actin, respectively) in the isoproterenol-treated hearts. Paricalcitol injections attenuated the isoproterenol-induced fluorescence intensity of two cell markers (p < 0.01).

Conclusions: Paricalcitol injections may ameliorate isoproterenol-induced cardiac fibrosis possibly through regulating cell transition.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CCM.0000000000001736DOI Listing

Publication Analysis

Top Keywords

cardiac fibrosis
20
cell transition
12
acute cardiomyopathy
12
paricalcitol
9
cardiomyopathic rats
8
male wistar-kyoto
8
attenuated isoproterenol-induced
8
isoproterenol-induced cardiac
8
cell markers
8
paricalcitol injections
8

Similar Publications

Apelin deficiency exacerbates cardiac injury following infarction by accelerating cardiomyocyte ferroptosis.

Free Radic Res

December 2024

Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

Apelin is an endogenous ligand for the Apelin receptor and is a critical protective effector in myocardial infarction (MI). Nevertheless, these protective mechanisms are not fully understood. Ferroptosis is the major driving factor of MI.

View Article and Find Full Text PDF

Fibrosis is the main pathological feature of aortic stiffness, which is a common extracardiac comorbidity of heart failure with preserved ejection fraction (HFpEF) and a contributor to left ventricular (LV) diastolic dysfunction. Systemic low-grade inflammation plays a crucial role in the pathogenesis of HFpEF and the development of vascular fibrosis. In this study, we investigate the inflammatory mechanism of aortic fibrosis in HFpEF using a novel mouse model.

View Article and Find Full Text PDF

Ca signaling in vascular smooth muscle and endothelial cells in blood vessel remodeling: a review.

Inflamm Regen

December 2024

Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.

Vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) act together to regulate blood pressure and systemic blood flow by appropriately adjusting blood vessel diameter in response to biochemical or biomechanical stimuli. Ion channels that are expressed in these cells regulate membrane potential and cytosolic Ca concentration ([Ca]) in response to such stimuli. The subsets of these ion channels involved in Ca signaling often form molecular complexes with intracellular molecules via scaffolding proteins.

View Article and Find Full Text PDF

Objective: To explore the influence of SALL4 in cardiac fibroblasts on the progression of myocardial infarction.

Methods: Analysis of genes specifically expressed in myocardial infarction by bioinformatics methods; The impact of SALL4 on myocardial infarction was assessed using mouse ultrasound experiments and Masson staining; The effect of SALL4 on the expression levels of collagen-I and collagen-III in myocardial tissue was examined by immunohistochemical staining; The migration ability of cardiac fibroblasts was evaluated using a Transwell assay; The proliferative ability of cardiac fibroblasts was tested using a CCK-8 assay; The relative fluorescence intensity of α-SMA and CTGF in cardiac fibroblasts were checked through immunofluorescence staining experiment; The expression of SALL4, DOT1L, H3K79me2, P53, SHP2, YAP, nucleus-YAP, collagen-I, α-SMA, CTGF, and PAI-1 in myocardial tissues or cardiac fibroblasts was detected using western blot analysis.

Results: SALL4-specific high expression in myocardial infarction; SALL4 intensified the alterations in the heart structure of mice with myocardial infarction and worsened the fibrosis of myocardial infarction; SALL4 also promoted the expression of SALL4, DOT1L, H3K79me2, P53, SHP2, YAP, nucleus-YAP, collagen-I, collagen-III, α-SMA, CTGF, and PAI-1 in myocardial infarction tissues and cardiac fibroblasts; Subsequently, SALL4 could enhance the immunofluorescence intensity of α-SMA and CTGF; Moreover, SALL4 could promote the proliferation and migration of cardiac fibroblasts.

View Article and Find Full Text PDF

Sodium-glucose co-transport protein 2 (SGLT2) inhibitors, a novel category of oral hypoglycemic agents, offer a promising outlook for individuals experiencing heart failure with reduced ejection fraction. Evidence is emerging that highlights their potential in alleviating myocardial fibrosis and oxidative stress. However, the precise mechanisms through which SGLT2 inhibitors influence myocardial fibrosis induced by angiotensin II (Ang II) or transforming growth factor-β1 (TGF-β1) are not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!