Photodegradation of 17α-ethinylestradiol (EE2) and 17β-estradiol (E2) was investigated under simulated solar radiation. Photodegradation kinetics in the absence and presence of humic substances (HSs) fractions (humic acids [HAs], fulvic acids [FAs], and XAD-4), were compared. Although all three fractions were responsible for a noticeable increase on photodegradation rates, the effects were greater for FA and XAD-4. Half-life time decreased from 46 and 94 h (direct photodegradation) for EE2 and E2, respectively, to 6.4, 2.1, and 2.7 h (for EE2) and 5.7, 2.9, and 3.1 h (for E2) in the presence of HAs, FAs, and XAD-4, respectively. The XAD-4 fraction results were similar to those of FAs, which is considered the most photochemically active fraction of HSs. Studies were also conducted in organic matter-rich environmental water matrices. After 5 h, photodegradation ranged from 44 to 94% for EE2 and from 27 to 95% for E2, compared with 16% for EE2 and 6% for E2 in ultrapure water. The maximum photodegradation was obtained in an estuarine water sample, known to be rich in FAs and XAD-4 fractions and poor in HAs, showing that not only is the presence of organic matter an important factor for the photodegradation increase, as also the type of organic matter is determinant.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2015.07.0396DOI Listing

Publication Analysis

Top Keywords

humic substances
8
fas xad-4
8
organic matter
8
photodegradation
7
ee2
5
xad-4
5
photosensitized degradation
4
degradation 17β-estradiol
4
17β-estradiol 17α-ethinylestradiol
4
17α-ethinylestradiol role
4

Similar Publications

Anaerobic digestion (AD) technology offers significant advantages in addressing environmental issues arising from the intensification of livestock production since it enables waste reduction and energy recovery. However, the molecular composition of dissolved organic matter (DOM) and its linkages to microbial biodiversity during the industrial-scale AD process of chicken manure (CM) remains unclear. In this study, the chemical structure of CM digestate-derived DOM was characterized by using multi-spectroscopic techniques and ultrahigh-resolution mass spectrometry, and the microbial composition was detected by using 16S rRNA gene sequencing.

View Article and Find Full Text PDF

This study focuses on the composition and sources of dissolved organic matter (DOM) in the Fancun Reservoir, located in Ningguo City, Anhui Province, China. The investigation was conducted by analyzing the spectral characteristics of DOM using UV-Vis absorption spectra and fluorescence spectroscopy. The humic substances were dominated by fulvic acid, with an average DOM concentration of 30.

View Article and Find Full Text PDF

Insights into nitrogen metabolism and humification process in aerobic composting facilitated by microbial inoculation.

Environ Res

January 2025

College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China; Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning, 530004, Guangxi, China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning, 530004, Guangxi, China. Electronic address:

To enhance the retention of compost nutrients, specifically in nitrogen metabolism and humification, compound microbial agents were added during the aerobic composting of bagasse pith and buffalo manure. The introduction of the microbial agent successfully colonized the mixture, boosted the degradation capacity of organic matter, and facilitated the formation of nitrogenous substances and humic substances (HSs). The incorporation of a composite microbial inoculum led to a substantial rise in total Kjeldahl nitrogen (TKN) by 62.

View Article and Find Full Text PDF

Molecular-level insights of microplastic-derived soluble organic matter and heavy metal interactions in different environmental occurrences through EEM-PARAFAC and FT-ICR MS.

J Hazard Mater

December 2024

College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China. Electronic address:

The interactions between microplastic-derived dissolved organic matter (MPs-DOM) and heavy metals (Cu, Pb, and Cd) regulate the complex environmental transport behavior of pollutants in terrestrial and aquatic environments. In this study, fluorescence excited emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC) and electrospray ionization coupled Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) were employed to investigate the complexation mechanism of MPs-DOM with heavy metals, as well as the effects of different environmental occurrences of MPs-DOM on the transport behaviors of heavy metals in saturated porous medium. The findings demonstrated that MPs-DOM, particularly humic-like substances containing aromatic structures and various oxygen functional groups, could form stable complexes with heavy metals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!