Clays could underpin a viable agricultural greenhouse gas (GHG) abatement technology given their affinity for nitrogen and carbon compounds. We provide the first investigation into the efficacy of clays to decrease agricultural nitrogen GHG emissions (i.e., NO and NH). Via laboratory experiments using an automated closed-vessel analysis system, we tested the capacity of two clays (vermiculite and bentonite) to decrease NO and NH emissions and organic carbon losses from livestock manures (beef, pig, poultry, and egg layer) incorporated into an agricultural soil. Clay addition levels varied, with a maximum of 1:1 to manure (dry weight). Cumulative gas emissions were modeled using the biological logistic function, with 15 of 16 treatments successfully fitted ( < 0.05) by this model. When assessing all of the manures together, NH emissions were lower (×2) at the highest clay addition level compared with no clay addition, but this difference was not significant ( = 0.17). Nitrous oxide emissions were significantly lower (×3; < 0.05) at the highest clay addition level compared with no clay addition. When assessing manures individually, we observed generally decreasing trends in NH and NO emissions with increasing clay addition, albeit with widely varying statistical significance between manure types. Most of the treatments also showed strong evidence of increased C retention with increasing clay additions, with up to 10 times more carbon retained in treatments containing clay compared with treatments containing no clay. This preliminary assessment of the efficacy of clays to mitigate agricultural GHG emissions indicates strong promise.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2015.11.0569DOI Listing

Publication Analysis

Top Keywords

clay addition
24
clay
9
clays decrease
8
livestock manures
8
efficacy clays
8
ghg emissions
8
assessing manures
8
emissions lower
8
highest clay
8
addition level
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!