Veterinary antibiotics (VAs) in manure applied to agricultural lands may change agrichemical degradation by altering soil microbial community structure or function. The objectives of this study were to investigate the influence of two VAs, sulfamethazine (SMZ) and oxytetracycline (OTC), on atrazine (ATZ) degradation, soil microbial enzymatic activity, and phospholipid fatty acid (PLFA) markers. Sandy loam soil with and without 5% swine manure (w/w) was amended with 0 or 500 μg kgC radiolabeled ATZ and with 0, 100, or 1000 μg kg SMZ or OTC and incubated at 25°C in the dark for 96 d. The half-life of ATZ was not significantly affected by VA treatment in the presence or absence of manure; however, the VAs significantly ( < 0.05) inhibited ATZ mineralization in soil without manure (25-50% reduction). Manure amendment decreased ATZ degradation by 22%, reduced ATZ mineralization by 50%, and increased the half-life of ATZ by >10 d. The VAs had limited adverse effects on the microbial enzymes β-glucosidase and dehydrogenase in soils with and without manure. In contrast, manure application stimulated dehydrogenase activity and altered chlorinated ATZ metabolite profiles. Concentrations of PLFA markers were reduced by additions of ATZ, manure, OTC, and SMZ; adverse additive effects of combined treatments were noted for arbuscular mycorrhizal fungi and actinobacteria. In this work, the VAs did not influence persistence of the ATZ parent compound or chlorinated ATZ metabolite formation and degradation. However, reduced CO evolved from VA-treated soil suggests an inhibition to the degradation of other ATZ metabolites due to an altered soil microbial community structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2134/jeq2015.05.0235 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550.
In soils, the first rain after a prolonged dry period represents a major pulse event impacting soil microbial community function, yet we lack a full understanding of the genomic traits associated with the microbial response to rewetting. Genomic traits such as codon usage bias and genome size have been linked to bacterial growth in soils-however, often through measurements in culture. Here, we used metagenome-assembled genomes (MAGs) with O-water stable isotope probing and metatranscriptomics to track genomic traits associated with growth and transcription of soil microorganisms over one week following rewetting of a grassland soil.
View Article and Find Full Text PDFEnviron Health Perspect
January 2025
Department of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Nevada, Reno, Reno, Nevada, USA.
Background: Coccidioidomycosis, caused by inhalation of spp. spores, is an emerging infectious disease that is increasing in incidence throughout the southwestern US. The pathogen is soil-dwelling, and spore dispersal and human exposure are thought to co-occur with airborne mineral dust exposures, yet fundamental exposure-response relationships have not been conclusively estimated.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Entomology, The Pennsylvania State University, University Park, PA, United States of America.
Because the use of synthetic agrochemicals is generally not allowed in organic crop production systems, growers rely on natural substances and processes, such as microbial control, to suppress insect pests. Reduced tillage practices are associated with beneficial soil organisms, such as entomopathogenic fungi, that can contribute to the natural control of insect pests. The impacts of management, such as tillage, in a cropping system can affect soil biota in the current season and can also persist over time as legacy effects.
View Article and Find Full Text PDFISME J
January 2025
Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, United States.
Long-term climate history can influence rates of soil carbon cycling but the microbial traits underlying these legacy effects are not well understood. Legacies may result if historical climate differences alter the traits of soil microbial communities, particularly those associated with carbon cycling and stress tolerance. However, it is also possible that contemporary conditions can overcome the influence of historical climate, particularly under extreme conditions.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States.
This study investigated the effects of fine-sized pork bone biochar particles on remediating As-contaminated soil and alleviating associated phytotoxicity to rice in 50-day short-term and 120-day full-life-cycle pot experiments. The addition of micro-nanostructured pork bone biochar (BC) pyrolyzed at 400 and 600 °C (BC400 and BC600) significantly increased the As-treated shoot and root fresh weight by 24.4-77.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!