Genetic marker effects and type of inheritance are estimated with poor precision when minor marker allele frequencies are low. A stable composite population (MARC II) was subjected to marker assisted selection for 2 yr to equalize and genetic marker frequencies to evaluate the epistatic and pleiotropic effects of these markers on BW, reproduction, and first calf performance traits in replacement beef females ( = 171) managed under 2 postweaning development protocols. Traits evaluated on the heifers were birth BW, weaning BW, 11-mo BW, 12-mo BW, 13-mo BW, first breeding season pregnancy evaluation BW, first calving season BW, 11-mo puberty, 12-mo puberty, 13-mo puberty, first breeding season pregnancy, and first calf weaning rate. Additionally, heifer's first calf performance traits of ordinal calving date, first calf birth BW, and first calf weaning BW (with and without age adjustment) were analyzed. Selection to increase minor allele frequencies and balanced sampling across genotype classes enhanced the ability to detect all genetic effects except dominance × dominance epistasis. The × genotype effect was significant ( < 0.05) for 11-mo BW and 12-mo BW and tended to be significant ( = 0.08) for 13-mo BW. Consistently, for all 3 traits, the most significant effect among epistatic × genotype effects was the additive effect, with the G allele decreasing BW. There were no associations between × genotype and fertility related traits ( ≥ 0.46) in this study. Additionally, there were no × genotype associations with first progeny performance traits ( ≥ 0.14). The large effect of the additive × additive interaction on first calf weaning BW was imprecisely estimated, which may warrant further investigation.

Download full-text PDF

Source
http://dx.doi.org/10.2527/jas.2015-9860DOI Listing

Publication Analysis

Top Keywords

performance traits
16
calf weaning
12
epistatic pleiotropic
8
pleiotropic effects
8
genetic marker
8
allele frequencies
8
calf performance
8
11-mo 12-mo
8
breeding season
8
season pregnancy
8

Similar Publications

Dissecting the Genetic Basis of Preharvest Sprouting in Rice Using a Genome-Wide Association Study.

J Agric Food Chem

January 2025

Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection Co-constructed By the Province and Ministry, Huaiyin Normal University, Huai'an 223300, China.

Preharvest sprouting (PHS) is an unfavorable trait in cereal crops that significantly reduces grain yield and quality. However, the regulatory mechanisms underlying this complex trait are still largely unknown. Here, 276 rice accessions from the 3000 Rice Genomes Project were used to perform a genome-wide association study.

View Article and Find Full Text PDF

Background: University students in Saudi Arabia are embracing some of the negative traits of the fast-paced modern lifestyle, typified by unhealthy eating, low physical activity, and poor sleep habits that may increase their risk for poor health. Health and holistic well-being at the population level are among the priorities of the 2030 vision of a vibrant society in the Kingdom of Saudi Arabia. The current study thus aims at determining the prevalence and predictive factors of Suboptimal Health Status (SHS) among university students.

View Article and Find Full Text PDF

Bauxite mining has been caused severe changes in the natural ecosystems of the Amazon, but the restoration of these areas is mandatory by federal law in Brazil. The recolonization of fauna is crucial to establishing the ecological functions of recovering forests, and the small nonflying mammals can stand out in this process. Assessing taxonomic and functional diversity parameters, we demonstrated that in the early stages of forest recovery post-bauxite mining, between 6 and 11 years, it is possible to restore approximately 45% of the richness of small non-flying mammal species from the original habitats, that in this case were altered Primary Forests.

View Article and Find Full Text PDF

Contrasts in hydraulics underlie the divergent performances of Populus and native tree species in water-limited sandy land environments.

Physiol Plant

January 2025

CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, People's Republic of China.

Populus tree species are commonly used for creating shelter forests in vast areas of northern China, at least partially due to their fast growth. However, they are facing severe problems of decline and mortality caused by drought. In contrast, tree species native to water-limited environments usually have slow growth and are currently not commonly used in afforestation, while these species are gaining more attention in forestry for their greater resilience to drought.

View Article and Find Full Text PDF

Cotton is an important crop for fiber production, but the genetic basis underlying key agronomic traits, such as fiber quality and flowering days, remains complex. While machine learning (ML) has shown great potential in uncovering the genetic architecture of complex traits in other crops, its application in cotton has been limited. Here, we applied five machine learning models-AdaBoost, Gradient Boosting Regressor, LightGBM, Random Forest, and XGBoost-to identify loci associated with fiber quality and flowering days in cotton.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!