Unfolding of membrane ruffles of in situ chondrocytes under compressive loads.

J Orthop Res

Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada.

Published: February 2017

Impact loading results in chondrocyte death. Previous studies implicated high tensile strain rates in chondrocyte membranes as the cause of impact-induced cell deaths. However, this hypothesis relies on the untested assumption that chondrocyte membranes unfold in vivo during physiological tissue compression, but do not unfold during impact loading. Although membrane unfolding has been observed in isolated chondrocytes during osmotically induced swelling and mechanical compression, it is not known if membrane unfolding also occurs in chondrocytes embedded in their natural extracellular matrix. This study was aimed at quantifying changes in membrane morphology of in situ superficial zone chondrocytes during slow physiological cartilage compression. Bovine cartilage-bone explants were loaded at 5 μm/s to nominal compressive strains ranging from 0% to 50%. After holding the final strains for 45 min, the loaded cartilage was chemically pre-fixed for 12 h. The cartilage layer was post-processed for visualization of cell ultrastructure using electron microscopy. The changes in membrane morphology in superficial zone cells were quantified from planar electron micrographs by measuring the roughness and the complexity of the cell surfaces. Qualitatively, the cell surface ruffles that existed before loading disappeared when cartilage was loaded. Quantitatively, the roughness and complexity of cell surfaces decreased with increasing load magnitudes, suggesting a load-dependent use of membrane reservoirs. Chondrocyte membranes unfold in a load-dependent manner when cartilage is compressed. Under physiologically meaningful loading conditions, the cells likely expand their surface through unfolding of the membrane ruffles, and therefore avoid direct stretch of the cell membrane. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:304-310, 2017.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.23260DOI Listing

Publication Analysis

Top Keywords

chondrocyte membranes
12
unfolding membrane
8
membrane ruffles
8
impact loading
8
membranes unfold
8
membrane unfolding
8
changes membrane
8
membrane morphology
8
superficial zone
8
roughness complexity
8

Similar Publications

Matrix-bound vesicles (MBVs), an integral part of the extracellular matrix (ECM), are emerging as pivotal factors in ECM-driven molecular signaling. This study is the first to report the isolation of MBVs from porcine arterial endothelial cell basement membranes (A-MBVs) and thyroid cartilage (C-MBVs), the latter serving as a negative control due to its minimal vascular characteristics. Using Transmission Electron Microscopy (TEM), Nano-Tracking Analysis (NTA), Electrochemical Impedance Spectroscopy (EIS), and Atomic Force Microscopy (AFM), we orthogonally characterized the isolated MBVs.

View Article and Find Full Text PDF

Eggshell membrane (ESM) is a rich source of bioactive compounds, including proteins, peptides, and antioxidants, contributing to its potential therapeutic benefits. These natural antioxidants might help neutralize reactive oxygen species (ROS) and modulate inflammatory responses, which are often linked with chondrocyte damage in osteoarthritis. In this study, we investigated the functional effects of ESM proteins on HO-induced oxidative stress in a neonatal canine chondrocytes.

View Article and Find Full Text PDF

Fasting activates optineurin-mediated mitophagy in chondrocytes to protect against osteoarthritis.

Commun Biol

January 2025

Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.

Mitochondrial homeostasis plays a crucial role in the pathogenesis of osteoarthritis (OA), a chronic musculoskeletal disorder characterized by articular cartilage degeneration and chondrocyte apoptosis. However, molecular mechanisms underlying the association between mitophagy and OA remain unclear. Here, we aimed to investigate the role of the autophagy receptor protein optineurin (OPTN) in OA, and explore the effects of dietary intervention on OA symptoms and its relationship with OPTN-mediated mitophagy.

View Article and Find Full Text PDF

Objective: Osteoarthritis (OA) is the most common form of chronic joint disease, affecting mainly the elderly population. This disorder is caused by cartilage degeneration with complex changes in the chondrocyte phenotype. Inorganic pyrophosphate (PPi) was shown to counteract the detrimental effect of interleukin (IL)-1β challenging in an in vitro OA model based on rat articular chondrocytes.

View Article and Find Full Text PDF

Background: This study aimed to investigate the impact of AM1241 on lipopolysaccharide (LPS)-induced chondrocyte inflammation in mice and its potential mechanism for improving osteoarthritis (OA).

Methods: The OA mice model was established employing the refined Hulth method. The impact of different concentrations of AM1241 on mice chondrocyte activity was detected using CCK-8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!