Robustness in lettuce, defined as the ability to produce stable yields across a wide range of environments, may be associated with below-ground traits such as water and nitrate capture. In lettuce, research on the role of root traits in resource acquisition has been rather limited. Exploring genetic variation for such traits and shoot performance in lettuce across environments can contribute to breeding for robustness. A population of 142 lettuce cultivars was evaluated during two seasons (spring and summer) in two different locations under organic cropping conditions, and water and nitrate capture below-ground and accumulation in the shoots were assessed at two sampling dates. Resource capture in each soil layer was measured using a volumetric method based on fresh and dry weight difference in the soil for soil moisture, and using an ion-specific electrode for nitrate. We used these results to carry out an association mapping study based on 1170 single nucleotide polymorphism markers. We demonstrated that our indirect, high-throughput phenotyping methodology was reliable and capable of quantifying genetic variation in resource capture. QTLs for below-ground traits were not detected at early sampling. Significant marker-trait associations were detected across trials for below-ground and shoot traits, in number and position varying with trial, highlighting the importance of the growing environment on the expression of the traits measured. The difficulty of identifying general patterns in the expression of the QTLs for below-ground traits across different environments calls for a more in-depth analysis of the physiological mechanisms at root level allowing sustained shoot growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4812043PMC
http://dx.doi.org/10.3389/fpls.2016.00343DOI Listing

Publication Analysis

Top Keywords

water nitrate
12
nitrate capture
12
below-ground traits
12
genetic variation
8
resource capture
8
qtls below-ground
8
traits
7
capture
5
lettuce
5
below-ground
5

Similar Publications

Constructed wetland (CW) technology has attracted much attention due to its economical and environmentally friendly features. The low dissolved oxygen (DO) and low carbon/nitrogen (C/N) ratio in the wetland influent water affect the treatment performance of CW, resulting in a decrease in the removal efficiency of ammonia nitrogen (NH -N) and nitrate nitrogen (NO -N). In order to address this problem, this study optimized the pollutants removal performance of unsaturated vertical flow constructed wetland (UVFCW) by adding sustained-release carbon sources (corn cobs + polybutylene adipate terephthalate (PBAT)).

View Article and Find Full Text PDF

Native vegetation degradation impacts soil communities and their functions. However, these impacts are often studied by comparing soil biotic attributes across qualitatively defined, discrete degradation levels within a single plant community at a specific location. Direct quantification of the relationships between vegetation and soil attributes across continuous degradation gradients and at larger scales is rare but holds greater potential to reveal robust patterns in aboveground-belowground linkages that may apply across different plant communities.

View Article and Find Full Text PDF

Variable effects of a fire-retardant gradient on seasonal wetland communities.

Ecotoxicology

January 2025

Department of Biological Sciences, California State University, Sacramento, CA, 95819, USA.

Wildfires have become larger and more severe in recent decades. Fire retardant is one of the most common wildfire response tools to protect against loss of life and property. Previous studies have documented various effects of fire retardant, which commonly contains chemicals used in fertilizers, on plant and invertebrate community composition.

View Article and Find Full Text PDF

In recent years, oxidoreductase enzymes such as laccases have received considerable attention for their ability to degrade and eliminate organic micropollutants from contaminated water in a process known as enzyme-based wastewater treatment. Thus, methods to produce high laccase activity in water are a point of focus, with white-rot fungi being highlighted as a tool in this context. This study, therefore, explored the applied approach of direct addition of mushroom spawn of the white-rot fungi Pleurotus ostreatus into water and its potential for laccase production under different conditions.

View Article and Find Full Text PDF

Investigations of the spatial-temporal variations of nutrients within mangrove coastal zones are essential for assessing the environmental status of an aquatic ecosystems. However, major processes controlling nitrate cycle along the submarine groundwater discharge (SGD) pathway from the mangrove areas to adjacent tidal creek remain underexplored. A time series measurement over a 25 h tidal cycle was conducted in Qinglan Bay tidal creek (Hainan Island, China).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!