Signal Improvement Strategies for Fluorescence Detection of Biomacromolecules.

J Fluoresc

Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, 210009, Jiangsu Province, People's Republic of China.

Published: May 2016

For analysis of biomacromolecules, a sensitive, specified and reliable method is indispensable. Fluorescent dyes or fluorophores have been widely used as mediums to obtain readout signals in various assays or bioimaging because of their versatilities such as biocompatibility. Those fluorescent dyes based techniques manipulate many molecular interactions for analysis of biomacromolecules including antibody-protein interaction, base complementation, glycan-lectin interaction, etc. The strategies to manipulate those molecular interactions are various and always updating due to the development of biotechnological tools and instruments. In this minireview, we summarize the state of the art of signal improvement techniques for fluorescence detection of biomacromolecules especially proteins and nucleic acids. We focus on the principle and mechanism of those techniques for fluorescence detection of biomacromolecules. We also discuss the future trend of the techniques for fluorescence detection of biomacromolecules.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-016-1806-3DOI Listing

Publication Analysis

Top Keywords

fluorescence detection
16
detection biomacromolecules
16
techniques fluorescence
12
signal improvement
8
analysis biomacromolecules
8
fluorescent dyes
8
manipulate molecular
8
molecular interactions
8
biomacromolecules
6
improvement strategies
4

Similar Publications

Teravoxel-scale, cellular-resolution images of cleared rodent brains acquired with light-sheet fluorescence microscopy have transformed the way we study the brain. Realizing the potential of this technology requires computational pipelines that generalize across experimental protocols and map neuronal activity at the laminar and subpopulation-specific levels, beyond atlas-defined regions. Here, we present artficial intelligence-based cartography of ensembles (ACE), an end-to-end pipeline that employs three-dimensional deep learning segmentation models and advanced cluster-wise statistical algorithms, to enable unbiased mapping of local neuronal activity and connectivity.

View Article and Find Full Text PDF

The role of human epidermal growth factor 2 (HER2) in male breast cancer (MBC) is poorly defined. A comprehensive description of HER2 status was conducted. A total of 6,015 MBC patients from 45 studies and 135 MBC patients with sequencing data were identified.

View Article and Find Full Text PDF

Visualizing mechanical stress distribution in soft and live biomaterials is essential for understanding biological processes and improving material design. However, it remains challenging due to their complexity, dynamic nature, and sensitivity requirements, necessitating innovative techniques. Since polysaccharides are common in various biomaterials, a biosensor integrating a Förster resonance energy transfer (FRET)-based tension sensor module and carbohydrate-binding modules (FTSM-CBM) has been designed for real-time monitoring of the stress distribution of these biomaterials.

View Article and Find Full Text PDF

As one of the essential components of reactive oxygen species (ROS), peroxynitrite (ONOO-) plays an indispensable role in redox homeostasis and signal transduction processes, and its deviant levels are associated with numerous clinical diseases. Therefore, accurate and rapid detection of intracellular ONOO- levels is crucial for revealing its role in physiological and pathological processes. Herein, we constructed a ratiometric fluorescent probe to detect ONOO- levels in biological systems.

View Article and Find Full Text PDF

Purpose: This study aims to investigate whether zinc ion (Zn) alleviates myocardial ischemia-reperfusion injury (MIRI) through the MAM-associated signaling pathway and to explore its impact on ERS and calcium overload.

Methods: H9C2 cells were cultured in a DMEM supplemented with 10 % fetal bovine serum and 1 % antibiotic solution. A MIRI model was established through simulated ischemia and reoxygenation with Zn treatment in a complete medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!