Field experiments were conducted in Starkville and Stoneville, MS; Marianna, AR; Winnsboro, LA; and Jackson, TN, during 2012 and 2014 to evaluate the relationship of corn earworm, Helicoverpa zea (Boddie), larval density and yield and the relationship between the percentage of damaged pods and yield in Mid-South soybean systems. Corn earworm moths were infested into field cages at R2 for 5-11 d to achieve a range of larval densities within each plot. Larval density was estimated at 14 d after infestation. Total pods and damaged pods were determined at 19 days after infestation to obtain the percentage of damaged pods. Plots were harvested at the end of each growing season and yield recorded. Data were subjected to regression analysis, and the relationship between larval density and yield and the relationship between the percentage of damaged pods and yield both can be described by a linear relationship. Each increase of one larvae per row-m resulted in a yield loss of 45.4 kg/ha. Similarly, each increase of 1% damaged pods resulted in a yield loss of 29.4 kg/ha. From these data, economic injury levels were developed for a range of crop values and control costs. These data suggest that current corn earworm threshold use in the Mid-South should be reduced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jee/tow052 | DOI Listing |
Sci Rep
January 2025
Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, 66506, USA.
The increasing frequency of heat stress events due to climate change disrupts all stages of plant growth, significantly reducing yields, especially in crops like mung bean (Vigna radiata (L.) R. Wilczek).
View Article and Find Full Text PDFJ Environ Manage
December 2024
USDA - Agricultural Research Service, United States.
The demand for seed-based restoration and revegetation of degraded drylands has intensified with increased disturbance and climate change. Invasive plants often hinder the establishment of seeded species; thus, they are routinely controlled with herbicides. Herbicides used to control invasive plants may maintain soil activity and cause non-target damage to seeded species.
View Article and Find Full Text PDFFront Microbiol
October 2024
National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China.
Damping-off disease in chili ( L.) cultivation is a significant global issue, severely affecting seeds, seedlings, and young plants, regardless of the location of cultivation, whether in greenhouses or open fields. Despite chili being a widely popular vegetable used in various cuisines globally, farmers face challenges in meeting the growing demand due to the extensive damage caused by this disease, ranging from 20 to 85%.
View Article and Find Full Text PDFPeerJ
October 2024
College of Agronomy, Sichuan Agricultural University, Chengdu, Chengdu, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!