Unlabelled: The graphene oxide (GO) has attracted tremendous attention in biomedical fields. In order to combine the unique physicochemical properties of GO nanosheets with topological structure of aligned nanofibrous scaffolds for nerve regeneration, the GO nanosheets were coated onto aligned and aminolyzed poly-l-lactide (PLLA) nanofibrous scaffolds. Scanning electronic microscopy (SEM) and atomic force microscopy (AFM) revealed that the surface of aligned PLLA nanofibers after being coated with GO became rougher than those of the aligned PLLA and aminolyzed PLLA nanofibrous scaffolds. The GO nanosheets did not destroy the alignment of nanofibers. The characterizations of X-ray photoelectron spectroscopy (XPS) and water contact angle displayed that the aligned PLLA nanofibrous scaffolds were introduced with hydrophilic groups such as NH2, COOH, and OH after aminolysis and GO nanosheets coating, showing better hydrophilicity. The GO-coated and aligned PLLA nanofibrous scaffolds significantly promoted Schwann cells (SCs) proliferation with directed cytoskeleton along the nanofibers compared with the aligned PLLA and aminolyzed PLLA nanofibrous scaffolds. These scaffolds also greatly improved the proliferation of rat pheochromocytoma 12 (PC12) cells, and significantly promoted their differentiation and neurite growth along the nanofibrous alignment in the presence of nerve growth factor (NGF). This type of scaffolds with nanofibrous surface topography and GO nanosheets is expected to show better performance in nerve regeneration.
Statement Of Significance: Recovery of damaged nerve functions remains a principal clinical challenge in spite of surgical intervention and entubulation. The use of aligned fibrous scaffolds provides suitable microenvironment for nerve cell attachment, proliferation and migration, enhancing the regeneration outcome of nerve tissue. Surface modification is generally required for the synthetic polymeric fibers by laminin, fibronectin and YIGSR peptides to stimulate specific cell functions and neurite outgrowth. Yet these proteins or peptides present the poor processibility, limited availability, and high cost, influencing their application in clinic. In this work, we combined GO nanosheets and topological structure of aligned nanofibrous scaffolds to direct cell migration, proliferation, and differentiation, and to induce neurite outgrowth for nerve regeneration. The GO coating improved several biomedical properties of the aligned PLLA nanofibrous scaffolds including surface roughness, hydrophilicity and promotion of cells/material interactions, which significantly promoted SCs growth and regulated cell orientation, and induced PC12 cells differentiation and neurite growth. The design of this type of structure is of both scientific and technical importance, and possesses broad interest in the fields of biomaterials, tissue engineering and regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2016.04.008 | DOI Listing |
Carbohydr Polym
March 2025
Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China. Electronic address:
Acellular cellulose-based biomaterials hold promising potential for treating bladder injuries. However, the compromised cellular state surrounding the wound impedes the complete reconstruction of the bladder. This necessitates the development of a bio-instructive cellulose-based biomaterial that actively controls cell behavior to facilitate effective bladder regeneration.
View Article and Find Full Text PDFTissue Cell
January 2025
School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea. Electronic address:
Numerous naturally occurring biological structures have inspired the development of innovative biomaterials for a wide range of applications. Notably, the nanotopographical architectures found in natural materials have been leveraged in biomaterial design to enhance cell adhesion and proliferation and improve tissue regeneration for biomedical applications. In this study, we fabricated three-dimensional (3D) chitin-glucan micro/nanofibrous fungal-based spheres coated with collagen (type I) to mimic the native extracellular matrix (ECM) microenvironment.
View Article and Find Full Text PDFNanomedicine (Lond)
January 2025
Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, Republic of Korea.
Int J Biol Macromol
January 2025
Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan 87717-67498, Iran.
3D printing, as a layer-by-layer manufacturing technique, enables the customization of tissue engineering scaffolds. Surface modification of biomaterials is a beneficial approach to enhance the interaction with living cells and tissues. In this research, a polylactic acid/polyethylene glycol scaffold containing 30 % bredigite nanoparticles (PLA/PEG/B) was fabricated utilizing fused deposition modeling (FDM) 3D printing.
View Article and Find Full Text PDFVet Res Forum
November 2024
Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
Scaffolds play a crucial role in tendon healing by providing structural support, promoting cell infiltration, and guiding tissue regeneration. Polycaprolactone (PCL) has been used as a polymer in biological scaffolds for several tissue engineering studies. This study aimed to investigate the effects of curcumin-loaded PCL scaffold on Achilles tendon using a tenotomy model in rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!