Although previous studies have shown an important role of renal dipeptidyl peptidase-4 (DPP-4) inhibition in ameliorating kidney injury in hypertensive rats, the renal distribution of DPP-4 and mechanisms of renoprotective action of DPP-4 inhibition remain unclear. In this study, we examined the effects of the DPP-4 inhibitor saxagliptin on DPP-4 activity in renal cells (using in situ DPP-4 staining) and on renal gene expression related to inflammation and fibrosis in the renal injury in hypertensive Dahl salt-sensitive (Dahl-S) rats. Male rats fed a high-salt (8% NaCl) diet received vehicle (water) or saxagliptin (12.7mg/kg/day) for 4 weeks. Blood pressure (BP), serum glucose and 24-h urinary albumin and sodium excretions were measured, and renal histopathology was performed. High salt-diet increased BP and urinary albumin excretion, consequently resulting in glomerular sclerosis and tubulointerstitial fibrosis. Although saxagliptin did not affect BP and blood glucose levels, it significantly ameliorated urinary albumin excretion. In situ staining showed DPP-4 activity in glomerular and tubular cells. Saxagliptin significantly suppressed DPP-4 activity in renal tissue extracts and in glomerular and tubular cells. Saxagliptin also significantly attenuated the increase in inflammation and fibrosis-related gene expressions in the kidney. Our results demonstrate that saxagliptin inhibited the development of renal injury independent of its glucose-lowering effect. Glomerular and tubular DPP-4 inhibition by saxagliptin was associated with improvements in albuminuria and the suppression of inflammation and fibrosis-related genes. Thus, local glomerular and tubular DPP-4 inhibition by saxagliptin may play an important role in its renoprotective effects in Dahl-S rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2016.04.005 | DOI Listing |
J Pharmacokinet Pharmacodyn
January 2025
Department of Clinical Pharmacy and Pharmacy Administration, West China school of Pharmacy, Sichuan University, Chengdu, 610064, China.
Alogliptin is a highly selective inhibitor of dipeptidyl peptidase-4 and primarily excreted as unchanged drug in the urine, and differences in clinical outcomes in renal impairment patients increase the risk of serious adverse reactions. In this study, we developed a comprehensive physiologically-based quantitative systematic pharmacology model of the alogliptin-glucose control system to predict plasma exposure and use glucose as a clinical endpoint to prospectively understand its therapeutic outcomes with varying renal function. Our model incorporates a PBPK model for alogliptin, DPP-4 activity described by receptor occupancy theory, and the crosstalk and feedback loops for GLP-1-GIP-glucagon, insulin, and glucose.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Department of Physiology and Pathophysiology, Jiaxing University Medical College, Jiaxing, China.
Alzheimer's disease (AD) is the most common disease associated with cognitive dysfunction, which is closely associated with type 2 diabetes mellitus (T2DM) in clinical manifestations, pathological changes and prevention. Inhibition of dipeptidyl peptidase 4 (DPP-4) can lower blood glucose levels by stimulating insulin secretion. Besides, it can affect cognitive function through the neuroprotective effect of DPP-4 substrates, such as glucose-dependent insulin peptide and glucagon-like peptide-1, the proteolytic effect on amyloid-β and the protective effect on neuronal structure.
View Article and Find Full Text PDFChem Biodivers
December 2024
Faculty of Medicine, Department of Chemistry, University of Niš, Niš, Serbia.
The thieno[2,3-d]pyrimidine fragment is in the structure of many drug-like candidate derivatives with a wide range of biological activities. However, very few dipeptidyl peptidase-4 (DPP-4) inhibitors with this building block are currently known. Here, the selection of a novel DPP-4 inhibitor based on the thienopyrimidine scaffold is reported.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Research, Mount Sinai Medical Center, Miami Beach, FL, USA. Electronic address:
Background: Excessive inflammation in sepsis causes microvascular dysfunction associated with organ dysfunction and high mortality. The present studies aimed to examine the therapeutic potential of linagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor in a clinically relevant polymicrobial sepsis model in mice.
Methods: Sepsis was induced by cecal ligation and puncture (CLP).
Chem Biodivers
December 2024
Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India.
1,2,3-triazole-based ring connected with pyridazine, triazine, methyl pyrazole, diphenyl pyrazole, and phthalimide moieties through propylene linker has been synthesized for antidiabetic evaluation via click chemistry. The antidiabetic evaluations have been done by molecular docking studies and in-vitro tests against the dipeptidyl peptidase-4 (DPP-4) enzyme. The molecular docking studies have revealed that compounds 22, 23, 29, and 30 showed hydrogen bonds with the DPP-4 enzyme while in-vitro tests have revealed that compound 30 has (IC values 12.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!