Melanoma exosomes enable tumor tolerance in lymph nodes.

Med Hypotheses

University of Louisville, Department of Pharmacology and Toxicology and the James Graham Brown Cancer Center, Clinical and Translational Research Building, 505 South Hancock Street, Louisville, KY 40202, United States. Electronic address:

Published: May 2016

Melanoma preferentially spreads via lymph nodes. Melanoma exosomes can induce angiogenesis and immune suppression. However, a role for melanoma exosomes in facilitating tumor tolerance in lymph nodes has not been considered. Herein, the hypothesis that melanoma exosome mediated induction of vascular endothelial cell (VEC) derived tumor necrosis factor alpha (TNF-α) results in lymphatic endothelial cell (LEC) mediated tumor tolerance is explored. To support this hypothesis, experiments involving ex vivo lymph node associated VECs, LECs, dendritic cells and T lymphocytes are proposed based upon a previously established fluorescent exosome lymph node trafficking model. The implication of the hypothesis in the context of melanoma exosome mediated induction of tumor tolerance in lymph nodes is then discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829918PMC
http://dx.doi.org/10.1016/j.mehy.2016.02.018DOI Listing

Publication Analysis

Top Keywords

tumor tolerance
16
lymph nodes
16
melanoma exosomes
12
tolerance lymph
12
nodes melanoma
8
melanoma exosome
8
exosome mediated
8
mediated induction
8
endothelial cell
8
lymph node
8

Similar Publications

Treatment options for recurrent high-risk non-muscle-invasive bladder cancer (HR NMIBC) and muscle-invasive bladder cancer (MIBC) are limited, highlighting a need for clinically effective, accessible, and better-tolerated alternatives. In this review we examine the clinical development program of TAR-200, a novel targeted releasing system designed to provide sustained intravesical delivery of gemcitabine to address the needs of patients with NMIBC and of those with MIBC. We describe the concept and design of TAR-200 and the clinical development of this gemcitabine intravesical system in the SunRISe portfolio of studies.

View Article and Find Full Text PDF

Deleted in malignant brain tumors 1 (DMBT1) gene relate to immune priming and phagocytosis modulation in the small abalone Haliotis diversicolor.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China. Electronic address:

The small abalone (Haliotis diversicolor) is an economic shellfish cultured in the south coast of China. In recent years, the frequent occurrence of the disease has led to significant mortality in abalone farms. Deleted in malignant brain tumors 1 (DMBT1), a member of the scavenger receptor cysteine-rich (SRCR) protein family, plays an important role in host defense.

View Article and Find Full Text PDF

BI 1703880, a novel STimulator of INterferon Genes (STING) agonist, has demonstrated preclinical antitumor activity. As STING activation can upregulate programmed death ligand 1 and human leukocyte antigen in tumor cells, a combination of BI 1703880 and an anti-programmed cell death protein 1-antibody, such as ezabenlimab, may improve efficacy. This first-in-human phase Ia study (NCT05471856) is evaluating BI 1703880 plus ezabenlimab in patients with advanced solid tumors.

View Article and Find Full Text PDF

NKTCL is a highly aggressive malignant tumor, especially prevalent in the southern regions of China. Although chemotherapy regimens based on ADM have achieved certain therapeutic effects in early treatment, the issue of ADM resistance severely limits the therapeutic efficacy and makes it difficult to improve patient survival rates. Our research results indicate that the expression level of APOC1 is closely related to the sensitivity of NKTCL cells to ADM.

View Article and Find Full Text PDF

Biological function and mechanism of NAT10 in cancer.

Cancer Innov

February 2025

Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics Guangzhou Medical University Guangzhou Guangdong China.

-acetyltransferase 10 (NAT10) is a nucleolar acetyltransferase with an acetylation catalytic function and can bind various protein and RNA molecules. As the N4-acetylcytidine (ac4C) "writer" enzyme, NAT10 is reportedly involved in a variety of physiological and pathological activities. Currently, the NAT10-related molecular mechanisms in various cancers are not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!