Plasmodium falciparum exports a large number of proteins to its host cell, the mature human erythrocyte, where they are involved in host cell modification. Amongst the proteins trafficked to the host cell, many are heat shock protein (HSP)40 homologues. We previously demonstrated that at least two exported PfHSP40s (referred to as PFE55 and PFA660) localise to mobile structures in the P. falciparum-infected erythrocyte (Kulzer et al., 2010), termed J-dots. The complete molecular content of these structures has not yet been completely resolved, however it is known that they also contain an exported HSP70, PfHSP70x, and are potentially involved in transport of the major cytoadherance ligand, PfEMP1, through the host cell. To understand more about the nature of the association of exported HSP40s with J-dots, here we have studied the signal requirements for recruitment of the proteins to these structures. By expressing various exported GFP chimeras, we can demonstrate that the predicted substrate binding domain is necessary and sufficient for J-dot targeting. This targeting only occurs in human erythrocytes infected with P. falciparum, as it is not conserved when expressing a P. falciparum HSP40 in Plasmodium berghei-infected murine red blood cells, suggesting that J-dots are P. falciparum-specific. This data reveals a new mechanism for targeting of exported proteins to intracellular structures in the P. falciparum-infected erythrocyte.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpara.2016.03.005 | DOI Listing |
Cell Rep
January 2025
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA. Electronic address:
One of the striking features of human immunodeficiency virus (HIV) is the capsid, a fullerene cone comprised of pleomorphic capsid protein (CA) that shields the viral genome and recruits cofactors. Despite significant advances in understanding the mechanisms of HIV-1 CA assembly and host factor interactions, HIV-2 CA assembly remains poorly understood. By templating the assembly of HIV-2 CA on functionalized liposomes, we report high-resolution structures of the HIV-2 CA lattice, including both CA hexamers and pentamers, alone and with peptides of host phenylalanine-glycine (FG)-motif proteins Nup153 and CPSF6.
View Article and Find Full Text PDFEcohealth
January 2025
Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan.
Anthropogenic disturbances degrade ecosystems, elevating the risk of emerging infectious diseases from wildlife. However, the key environmental factors for preventing tick-borne disease infection in relation to host species, landscape components, and climate conditions remain unknown. This study focuses on identifying crucial environmental factors contributing to the outbreak of severe fever with thrombocytopenia syndrome (SFTS), a tick-borne disease, in Miyazaki Prefecture, southern Japan.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.
View Article and Find Full Text PDFCytotherapy
January 2025
Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Division of Hematology, University of Toronto, Toronto, Ontario, Canada. Electronic address:
The December 2024 US Food and Drug Administration (FDA) approval of Mesoblast's Ryoncil (remestemcel-L-rknd)-allogeneic bone marrow mesenchymal stromal cell (MSC(M)) therapy-in pediatric acute steroid-refractory graft-versus-host-disease finally ended a long-lasting drought on approved MSC clinical products in the United States. While other jurisdictions-including Europe, Japan, India, and South Korea-have marketed autologous or allogeneic MSC products, the United States has lagged in its approval. The sponsor's significant efforts and investments, working closely with the FDA addressing concerns regarding clinical efficacy and consistent MSC potency through an iterative process that spanned several years, was rewarded with this landmark approval.
View Article and Find Full Text PDFBiophys J
January 2025
Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany. Electronic address:
Translocation across barriers and through constrictions is a mechanism that is often used in vivo for transporting material between compartments. A specific example is apicomplexan parasites invading host cells through the tight junction that acts as a pore, and a similar barrier crossing is involved in drug delivery using lipid vesicles penetrating intact skin. Here, we use triangulated membranes and energy minimization to study the translocation of vesicles through pores with fixed radii.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!