Dectin-1 is a C-type lectin-like pattern recognition receptor for β(1-3)-glucans. It plays a crucial role in protecting against fungal invasion through binding to β-glucans which are commonly present on the fungal cell wall. To probe its ligand binding mechanism by NMR, we expressed the recombinant murine Dectin-1 C-type lectin-like domain (CTLD) in E. coli using pCold vector and purified it. However, the high concentration of Dectin-1 CTLD required for NMR analysis could not be attained due to its inherent low solubility and low bacterial expression. In this study, we tried to increase expression and solubility of Dectin-1 CTLD by codon optimization and fusion of a GB1 tag (B1 domain of streptococcal Protein G). GB1 was inserted on either the N-terminal (NT) or C-terminal end as well as both terminal ends of human and mouse Dectin-1 CTLDs. A pure monomeric sample was only obtained with NT-GB1 fused mouse Dectin-1. Expression of mouse Dectin-1 CTLD yielded 0.9 ± 0.2 mg/L culture, codon optimized mouse Dectin-1 CTLD produced 1.4 ± 0.2 mg/L, and the tag-fused domain 7.1 ± 0.3 mg/L. The tag also increased solubility from 0.1 mM to 1.4 mM. The recombinant protein was correctly folded, in a monomeric state, and specifically bound β-glucan laminarin. These results indicate that fusing GB1 to the N-terminus of mouse Dectin-1 domain advantageously increases yield and solubility, allows retention of native structure, and that the site of fusion is critical.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pep.2016.04.002 | DOI Listing |
BMC Immunol
January 2025
Laboratory of Oncology, Medical Research Center, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, China.
Background: B lymphocytes, essential in cellular immunity as antigen-presenting cells and in humoral immunity as major effector cells, play a crucial role in the antitumor response. Our previous work has shown β-glucan enhanced immunoglobulins (Ig) secretion. But the specific mechanisms of B-cell activation with β-glucan are poorly understood.
View Article and Find Full Text PDFInfect Immun
December 2024
Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
pneumonia (PJP) remains a significant cause of morbidity and mortality during AIDS. In AIDS, the absence of CD4 immunity results in exuberant and often fatal PJP. In addition, organism clearance requires a balanced macrophage response since excessive inflammation promotes lung injury and respiratory failure.
View Article and Find Full Text PDFJ Control Release
December 2024
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China. Electronic address:
Self-adjuvanted vaccine delivery platforms possess potential for targeted delivery of antigens and initiation of potent immune responses. Although aluminum-containing adjuvants have been approved and widely used in human vaccines, their effectiveness in inducing Th1-type immune responses is far from satisfactory. To facilitate antigen delivery and activate potent antitumor immune responses, a self-adjuvanted nanovaccine (CPBG-Al@OVA) is constructed by functionalizing aluminum hydroxide with β-1,3-glucan, which recognizes pattern recognition receptors via Dectin-1.
View Article and Find Full Text PDFInt J Med Mushrooms
December 2024
Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
The traditional use of Cordyceps militaris, an entomopathogenic fungus, in East Asian medicine has been well documented. Our previous study revealed that the fruiting body powder of C. militaris, referred to as Ryukyu-kaso, contains 1,3-β-glucan and stimulates bone marrow-derived dendritic cells via a dectin-1-dependent pathway.
View Article and Find Full Text PDFeNeuro
December 2024
Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!