A fast, sensitive, and reliable ultra-high performance liquid chromatography with tandem mass spectrometry method has been developed and validated for the simultaneous quantitation and pharmacokinetic study of five phthalides (senkyunolide A, ligustilide, butylidenephthalide, 3-butylphthalide, and levistilide A) in rat plasma after oral administration of Huo Luo Xiao Ling Dan (HLXLD) or Angelica sinensis--Ligusticum chuanxiong herb pair (DG-CX) between normal and arthritis rats. After extraction from blood, the analytes and internal standard were subjected to ultra-high performance liquid chromatography with a Shim-pack XR-ODS column (75 × 3.0 mm(2) , 2.2 μm particles) and mobile phase was composed of methanol and water (containing 0.05% formic acid) under gradient elution conditions, with an electrospray ionization source in the positive ionization and multiple reaction monitoring mode. The lower limits of quantification were 0.192-0.800 ng/mL for all the analytes. Satisfactory linearity, precision, accuracy, mean extraction recovery, and acceptable matrix effect have been achieved. The validated method was successfully applied to a comparative pharmacokinetic study of five bioactive components in rat plasma after oral administration of HLXLD or DG-CX alone, respectively, between normal and arthritic rats. The results showed that there were unlike characters of pharmacokinetics among different groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.201600023 | DOI Listing |
Z Med Phys
January 2025
Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland.
Purpose: This study aims to evaluate the feasibility of structural sub-millimeter isotropic brain MRI at 0.55 T using a 3D half-radial dual-echo balanced steady-state free precession sequence, termed bSTAR and to assess its potential for high-resolution magnetization transfer imaging.
Methods: Phantom and in-vivo imaging of three healthy volunteers was performed on a low-field 0.
Environ Pollut
January 2025
Beijing Institute of Occupational Disease Prevention and Control, Beijing 100093, China. Electronic address:
Studies have shown that the presence of allergens, including insecticides, significantly increases the risk of occupational allergic diseases among solar greenhouse workers. However, no studies have yet investigated the relationship between organophosphorus pesticide use by greenhouse workers and allergic diseases, and the role of the flora in this context remains unclear. Therefore, this study aimed to investigate the relationship between combined exposure to organophosphorus pesticides (OPs) and Glyphosate (GLY) and changes in total immunoglobulin E (IgE) levels, as well as to analyze the role of nasal flora in allergic status.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China. Electronic address:
This study aimed to investigate the potential protective properties of a traditional Chinese medicine (TCM) herbal product, Siraitia grosvenorii granules (SGG) against PM2.5-induced lung injury, as well as their active constituents and underlying mechanisms. The chemical composition of SGG, such as wogonin (MOL000173), luteolin (MOL000006), nobiletin (MOL005828), naringenin (MOL004328), acacetin (MOL001689), were identified via ultra-high-performance liquid chromatography-Q Exactive (UHPLC-QE) Orbitrap/MS.
View Article and Find Full Text PDFOpen Life Sci
December 2024
Bioactive and Environmental Health Laboratory, Faculty of Sciences, Moulay Ismail University, Meknes, B.P. 11201, Morocco.
Moroccan L. seeds were investigated for their phenolic profile and antidiabetic potential. Ultra-high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry analysis revealed a rich phenolic composition, including benzoic acid, cannabisin B, genistein, and epicatechin.
View Article and Find Full Text PDFSmall
January 2025
Anhui Provincial Key Laboratory of Advanced Catalysis and Energy Materials, Anhui Ultra High Molecular Weight Polyethylene Fiber Engineering Research Center, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246133, P. R. China.
The catalytic conversion of CO into valuable chemicals using metalized covalent organic frameworks (COFs) as catalysts is a promising method for reducing atmospheric CO levels. Herein, a aldehyde-amine COF (TAPT-Tp) at room temperature and pressure and their metallized results is synthesized, Ni-TAPT-Tp and Ti-TAPT-Tp. The photocatalytic results indicate that the CO to CO reduction rate is 6182.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!