A biologically inert photolabile precursor of carbamoylcholine has been synthesized; it is photolyzed to carbamoylcholine, a well-characterized acetylcholine analogue, with a half-time of 40 microseconds at pH 7.0 and a quantum yield of 0.8. The compound, N-(alpha-carboxy-2-nitrobenzyl)carbamoylcholine, was synthesized from (2-nitrophenyl)glycine. The photolysis rates (of five compounds) and the biological activity (of two compounds) were determined, and both properties were found to depend on the nature of the substituents on the photolabile protecting group. Laser pulse photolysis at wavelengths between 308 and 355 nm was used to investigate the wavelength dependence, quantum yield, and rate of the photolysis reaction. Photolysis products were isolated by high-performance liquid chromatography and identified by chemical and spectroscopic analysis and by their ability to activate the nicotinic acetylcholine receptor. BC3H1 muscle cells containing those receptors and a cell-flow method were used in the biological assays. The approach described may be useful in the preparation and characterization of other photolabile precursors of neurotransmitters that contain amino groups. The importance of these rapidly photolyzed, inert precursors of neurotransmitters is in chemical kinetic investigations of the reactions involving diverse neuronal receptors; such studies have been hampered because the available techniques have an insufficient time resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00427a008 | DOI Listing |
Gut Microbes
December 2025
Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China.
Necrotizing Enterocolitis (NEC) is a severe, life-threatening inflammatory condition of the gastrointestinal tract, especially affecting preterm infants. This review consolidates evidence from various biomedical disciplines to elucidate the complex pathogenesis of NEC, integrating insights from clinical, microbial, and molecular perspectives. It emphasizes the modulation of NEC-associated inflammatory pathways by probiotics and novel biologics, highlighting their therapeutic potential.
View Article and Find Full Text PDFBiomol NMR Assign
January 2025
High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.
PhoCl is a photocleavable protein engineered from a green-to-red photoconvertible fluorescent protein by circular permutation, and has been used in various optogenetic applications including precise control of protein localization and activity in cells. Upon violet light illumination, PhoCl undergoes a β-elimination reaction to be cleaved at the chromophore, resulting in spontaneous dissociation into a large empty barrel and a small C-terminal peptide. However, the structural determinants and the mechanism of the PhoCl photocleavage remain elusive, hindering the further development of more robust photocleavable optogenetic tools.
View Article and Find Full Text PDFBiomol NMR Assign
January 2025
Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
The nutrient germinant receptors (GRs) in spores of Bacillus species consist of a cluster of three proteins- designated A, B, and C subunits- that play a critical role in initiating the germination of dormant spores in response to specific nutrient molecules. The Bacillus cereus GerI GR is essential for inosine-induced germination; however, the roles of the individual subunits and the mechanism by which germinant binding activates GR function remain unclear. In this study, we report the backbone chemical shift assignments of the N-terminal domain (NTD) of the A subunit of GerI (GerIA).
View Article and Find Full Text PDFGeroscience
January 2025
National Institute On Aging, Bethesda, MD, USA.
Photobiomodulation (PBM) therapy, a non-thermal light therapy using nonionizing light sources, has shown therapeutic potential across diverse biological processes, including aging and age-associated diseases. In 2023, scientists from the National Institute on Aging (NIA) Intramural and Extramural programs convened a workshop on the topic of PBM to discuss various proposed mechanisms of PBM action, including the stimulation of mitochondrial cytochrome C oxidase, modulation of cell membrane transporters and receptors, and the activation of transforming growth factor-β1. They also reviewed potential therapeutic applications of PBM across a range of conditions, including cardiovascular disease, retinal disease, Parkinson's disease, and cognitive impairment.
View Article and Find Full Text PDFClin Exp Med
January 2025
Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!