A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimization of the composition of zwitterionic copolymers for the easy-construction of bio-inactive surfaces. | LitMetric

Random copolymers (S-PCMBx) of the zwitterionic monomer carboxymethylbetaine (CMB) and a small percentage of 3-methacryloyloxypropyl trimethoxysilane with various composition ratios were synthesized in ethanol using 2,2'-azobisisobutyronitrile as the initiator. An S-PCMBx layer formed on the glass substrate after soaking in the copolymer solution and had a thickness of 2-3 nm. The S-PCMBx-modified surface was highly hydrophilic and suppressed both the non-specific adsorption of protein (bovine serum albumin) and NIH3T3-fibroblast adhesion. The degree of adsorption suppression increased with increasing copolymer CMB content with a maximum at 90 mol % CMB. In contrast, the modification of the glass substrate with a PCMB homopolymer terminally modified with a trimethoxysilyl group did not effectively suppress protein adsorption and cell adhesion due to the low graft density. The importance of balancing the number of fixation points and the length of the zwitterionic polymer loops to produce bio-inactive metal oxide surfaces is suggested. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2029-2036, 2016.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.35737DOI Listing

Publication Analysis

Top Keywords

glass substrate
8
optimization composition
4
composition zwitterionic
4
zwitterionic copolymers
4
copolymers easy-construction
4
easy-construction bio-inactive
4
bio-inactive surfaces
4
surfaces random
4
random copolymers
4
copolymers s-pcmbx
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!