Oxidative stress plays a crucial role in numerous cardiovascular diseases. As an effective therapy, Danhong injection (DHI) is considered to act through an antioxidant mechanism for the treatment of cardiovascular disease. In our study, we focused on the potential contribution of the antioxidant capacity of DHI fractions (Frs) and established an innovative screening method based on a 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity assay. A ternary network evaluation system, which was constructed based on the radical scavenging activity, the area under the activity-concentration curve and the solid content of the fractions, was implemented to select the fractions that posed the greatest antioxidant effect. As a result, Frs 5-7 and Frs 17-19 were shown to exhibit superior antioxidant activity according to the regression area of the ternary network, which was >0.5. Furthermore, the active fractions were characterized by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry combined with nuclear magnetic resonance. This study provided an effective method for the comprehensive evaluation of the antioxidant effect of DHI fractions. Copyright © 2016 John Wiley & Sons, Ltd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bmc.3739 | DOI Listing |
Sci Rep
January 2025
Department of Economics, Kardan University, Kabul, Afghanistan.
The Internet of Things (IoT) has recently attracted substantial interest because of its diverse applications. In the agriculture sector, automated methods for detecting plant diseases offer numerous advantages over traditional methods. In the current study, a new model is developed to categorize plant diseases within an IoT network.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410003, China.
Motivation: Accurately predicting the degradation capabilities of proteolysis-targeting chimeras (PROTACs) for given target proteins and E3 ligases is important for PROTAC design. The distinctive ternary structure of PROTACs presents a challenge to traditional drug-target interaction prediction methods, necessitating more innovative approaches. While current state-of-the-art (SOTA) methods using graph neural networks (GNNs) can discern the molecular structure of PROTACs and proteins, thus enabling the efficient prediction of PROTACs' degradation capabilities, they rely heavily on limited crystal structure data of the POI-PROTAC-E3 ternary complex.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Science and Technology, Federal University of São Paulo, 12247-014, São José dos Campos, São Paulo, Brazil.
This study investigates the structural and dynamic properties of ternary mixtures composed of NaPF, ethylene carbonate (EC), and the ionic liquid choline glycine (ChGly), with a focus on their potential as electrolytes for supercapacitors. The combination of NaPF-EC, known for its high ionic conductivity, with the biodegradable and environmentally friendly ChGly offers a promising approach to enhancing electrolyte performance. Through molecular simulations, we analyze how the inclusion of small concentrations of ChGly affects key properties such as density, cohesive energy, and ion mobility.
View Article and Find Full Text PDFACS Omega
December 2024
School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China.
Iron-oxide (FeO) nanoneedles were first in situ grown on the surface of carbon nanofibers (CNFs) using hydrothermal and N annealing process, and then polyaniline (PANI) was coated on the FeO nanoneedles to form network-like nanorods through dilute solution polymerization. The PANI/FeO/CNFs binder-free electrode exhibited a high specific capacitance of 603 F/g at 1 A/g with good rate capability. (The capacitance loss was about 48.
View Article and Find Full Text PDFSci Rep
December 2024
School of Chemical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
Benzene separation from hydrocarbon mixtures is a challenge in the refining and petrochemical industries. The application of liquid-liquid extraction process using ionic liquids (I.Ls) is an option for this separation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!