A review of the peripheral levels of regulation by thyroid hormone.

J Comp Physiol B

Terrence Donnelly Centre for Cellular and Biomolecular Research, The University of Toronto, Toronto, ON, Canada.

Published: August 2016

Thyroid hormone (TH) regulates many physiological processes that differ between tissues, developmental stages and in response to specific environmental cues. It can therefore play very different signaling roles depending on specific physiological contexts. Much progress has been made in resolving mechanisms for TH signaling over the past 2 decades, and there has been increasing emphasis on the role of peripheral levels of regulation in determining ultimate TH action. This progress has revealed a complex regulatory network, where TH bioavailability and bioactivity are peripherally regulated by sometimes subtle mechanisms at various levels of organization, including membrane receptors and transporters on the cell surface, intracellular deiodinase enzymes, thyroid receptor isoforms and cytosolic thyroid hormone binding proteins, and via accessibility and subtypes of thyroid hormone response elements in the promoters of target genes. The majority of this research comes from disease models, and so the biological relevance of each of these regulatory levels has not been comprehensively explored. This review synthesizes what is known of these local levels of TH regulation, with particular focus on their functional roles in regulating animal response to environmental cues. While thorough analysis for all of these regulatory levels in any one study is currently unrealistic, an appreciation for their collective importance is necessary to frame comparative analyses in a relevant context. This is important because common biomarkers for TH action can have very different meanings, not only for different tissues, but also for individuals, populations and species from different developmental or environmental backgrounds.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00360-016-0984-2DOI Listing

Publication Analysis

Top Keywords

thyroid hormone
16
levels regulation
12
peripheral levels
8
environmental cues
8
regulatory levels
8
levels
6
thyroid
5
review peripheral
4
regulation thyroid
4
hormone
4

Similar Publications

Active Vitamin D Ameliorates Arsenite-Induced Thyroid Dysfunction in Sprague-Dawley Rats by Inhibiting the Toll-like Receptor 4/NF-KappaB-Mediated Inflammatory Response.

Toxics

December 2024

Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China.

Arsenic, a well-known environmental endocrine disruptor, exerts interference on the body's endocrine system. Our previous investigations have demonstrated that chronic exposure to sodium arsenite (NaAsO) can induce thyroid damage and dysfunction in Sprague-Dawley (SD) rats. Vitamin D (VD) is an indispensable fat-soluble vitamin that plays a crucial role in maintaining thyroid health.

View Article and Find Full Text PDF

Thyroid hormones (THs) require iodine for biosynthesis and play critical roles in brain development. Perchlorate is an environmental contaminant that reduces serum THs by blocking the uptake of iodine from the blood to the thyroid gland. Using a pregnant rodent model, we examined the impact of maternal exposure to perchlorate under conditions of dietary iodine deficiency (ID) on the brain and behavior of offspring.

View Article and Find Full Text PDF

The retinal pigment epithelium (RPE) contributes to retinal homeostasis, and its metabolic dysfunction is implied in the development of retinal degenerative disease. The isoform M2 of pyruvate kinase (PKM2) is a key factor in cell metabolism, and its function may be affected by insulin-like growth factor 1 (IGF-1). This study aims to investigate the effect of IGF-1 on PKM2 modulation of RPE cells and whether co-treatment with klotho may preserve it.

View Article and Find Full Text PDF

Gaucher disease (GD), the most common ultra-rare metabolic disorder, results from lipid accumulation. Systemic inflammation, cellular stress, and metabolic dysfunction may influence endocrine function, including the thyroid. This study evaluated thyroid function and morphology in 60 GD patients, alongside carbohydrate and lipid metabolism.

View Article and Find Full Text PDF

Bichromatic Splicing Detector Allows Quantification of and Splicing Isoforms in Single Cells by Fluorescent Live-Cell Imaging.

Int J Mol Sci

December 2024

Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.

Thyroid hormone receptor alpha (THR) is a nuclear hormone receptor that binds triiodothyronine (T3) and acts as an important transcription factor in development, metabolism, and reproduction. The coding gene, , has two major splicing isoforms in mammals, and , which encode THR1 and THR1, respectively. The better characterized isoform, THR1, is a transcriptional stimulator of genes involved in cell metabolism and growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!