Changes in the environmental conditions experienced by naturally occurring populations are frequently accompanied by changes in adaptive traits allowing the organism to cope with environmental unpredictability. Phenotypic plasticity is a major aspect of adaptation and it has been involved in population dynamics of interacting species. In this study, phenotypic plasticity (i.e., environmental sensitivity) of morphological adaptive traits were analyzed in the cactophilic species Drosophila buzzatii and Drosophila koepferae (Diptera: Drosophilidae) considering the effect of crowding conditions (low and high density), type of competition (intraspecific and interspecific competition) and cacti hosts (Opuntia and Columnar cacti). All traits (wing length, wing width, thorax length, wing loading and wing aspect) showed significant variation for each environmental factor considered in both Drosophila species. The phenotypic plasticity pattern observed for each trait was different within and between these cactophilic Drosophila species depending on the environmental factor analyzed suggesting that body size-related traits respond almost independently to environmental heterogeneity. The effects of ecological factors analyzed in this study are discussed in order to elucidate the causal factors investigated (type of competition, crowding conditions and alternative host) affecting the election of the breeding site and/or the range of distribution of these cactophilic species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1744-7917.12345 | DOI Listing |
Sci Rep
December 2024
Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.
View Article and Find Full Text PDFRespir Physiol Neurobiol
December 2024
Department of Biology, Bates College, Lewiston, ME 04240.
Chronic hyperoxia during early postnatal development depresses breathing when neonatal rats are returned to room air and causes long-lasting attenuation of the hypoxic ventilatory response (HVR). In contrast, little is known about the control of breathing of juvenile or adult mammals after chronic exposure to moderate hyperoxia later in life. Therefore, Sprague-Dawley rats were exposed to 60% O for 7 days (juveniles) or for 4 and 14 days (adults) and ventilation was measured by whole-body plethysmography immediately after the exposure or following a longer period of recovery in room air.
View Article and Find Full Text PDFJ Morphol
January 2025
Zoologische Staatssammlung München (ZSM-SNSB), Munich, Germany.
Booidean snakes are a diverse and widespread lineage with an intriguing evolutionary and biogeographic history. By means of cranial morphology and osteology, this study investigates the evolutionary convergence in the Neotropical genera Boa and Corallus on the one hand and the Malagasy clade comprising Acrantophis and Sanzinia on the other. We hypothesize that the mostly arboreal Corallus and Sanzinia present larger jaws and longer teeth to keep hold of the prey and resist gravity and torsional forces acting on their skull while hanging from branches, while terrestrial genera such as Acrantophis show thinner jaws with shorter teeth because they can rely on the full length of their coils to immobilize and constrict the prey together with a substrate that supports the whole of their body.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Life Science and Technology, Harbin Normal University, Harbin, China.
Background: Lavandula angustifolia Mill., a valuable aromatic plant, often encounters low temperature stress during its growth in Northeast China. Understanding the mechanisms behind its resistance to low temperatures is essential for enhancing this trait.
View Article and Find Full Text PDFBMC Ecol Evol
December 2024
Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, 800 Lancaster Avenue, Villanova, PA, 19085, USA.
Lygodactylus geckos represent a well-documented radiation of miniaturized lizards with diverse life-history traits that are widely distributed in Africa, Madagascar, and South America. The group has diversified into numerous species with high levels of morphological similarity. The evolutionary processes underlying such diversification remain enigmatic, because species live in different ecological biomes, ecoregions and microhabitats, while suggesting strikingly high levels of homoplasy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!