An acetylcholine alpha7 positive allosteric modulator rescues a schizophrenia-associated brain endophenotype in the 15q13.3 microdeletion, encompassing CHRNA7.

Eur Neuropsychopharmacol

Tailored Therapeutics - Neuroscience, Eli Lilly and Company, Indianapolis, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA.

Published: July 2016

The 15q13.3 microdeletion copy number variation is strongly associated with schizophrenia and epilepsy. The CHRNA7 gene, encoding nicotinic acetylcholine alpha 7 receptors (nAChA7Rs), is hypothesized to be one of the main genes in this deletion causing the neuropsychiatric phenotype. Here we used a recently developed 15q13.3 microdeletion mouse model to explore whether an established schizophrenia-associated connectivity phenotype is replicated in a murine model, and whether positive modulation of nAChA7 receptor might pharmacologically normalize the connectivity patterns. Resting-state fMRI data were acquired from male mice carrying a hemizygous 15q13.3 microdeletion (N=9) and from wild-type mice (N=9). To study the connectivity profile of 15q13.3 mice and test the effect of nAChA7 positive allosteric modulation, the 15q13.3 mice underwent two imaging sessions, one week apart, receiving a single intraperitoneal injection of either 15mg/kg Lu AF58801 or saline. The control group comprised wild-type mice treated with saline. We performed seed-based functional connectivity analysis to delineate aberrant connectivity patterns associated with the deletion (15q13.3 mice (saline treatment) versus wild-type mice (saline treatment)) and their modulation by Lu AF58801 (15q13.3 mice (Lu AF58801 treatment) versus 15q13.3 mice (saline treatment)). Compared to wild-type mice, 15q13.3 mice evidenced a predominant hyperconnectivity pattern. The main effect of Lu AF58801 was a normalization of elevated functional connectivity between prefrontal and frontal, hippocampal, striatal, thalamic and auditory regions. The strongest effects were observed in brain regions expressing nAChA7Rs, namely hippocampus, cerebral cortex and thalamus. These effects may underlie the antiepileptic, pro-cognitive and auditory gating deficit-reversal effects of nAChA7R stimulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.euroneuro.2016.03.013DOI Listing

Publication Analysis

Top Keywords

15q133 mice
24
15q133 microdeletion
16
wild-type mice
16
mice saline
12
saline treatment
12
mice
11
15q133
10
positive allosteric
8
connectivity patterns
8
functional connectivity
8

Similar Publications

A conifer metabolite corrects episodic ataxia type 1 by voltage sensor-mediated ligand activation of Kv1.1.

Proc Natl Acad Sci U S A

January 2025

Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697.

Loss-of-function sequence variants in , which encodes the voltage-gated potassium channel Kv1.1, cause Episodic Ataxia Type 1 (EA1) and epilepsy. Due to a paucity of drugs that directly rescue mutant Kv1.

View Article and Find Full Text PDF

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

Confined cell migration along extracellular matrix space in vivo.

Proc Natl Acad Sci U S A

January 2025

Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.

Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.

View Article and Find Full Text PDF

In species with genetic sex determination (GSD), the sex identity of the soma determines germ cell fate. For example, in mice, XY germ cells that enter an ovary differentiate as oogonia, whereas XX germ cells that enter a testis initiate differentiation as spermatogonia. However, numerous species lack a GSD system and instead display temperature-dependent sex determination (TSD).

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!