Previous studies have shown that erythrocytes from the Milan hypertensive strain of rats (MHS) differ from erythrocytes from the control normotensive strain (MNS). These differences are determined within the stem cells, are genetically associated with the development of hypertension, and are similar to those found between the tubular cells of the two strains. Moreover they seem to be dependent upon the presence of the membrane skeleton proteins. In this paper we describe our studies aimed at identifying some precise protein difference between the membrane skeletons of the two strains, which may cause the cellular differences described above. Milan hypertensive strain and MNS rats were immunized with ghost or membrane skeleton extracts prepared from the other or their own strains. Only MHS rats immunized with MNS ghost or membrane skeleton extracts produced an antibody against a 105 KD protein in about 95% of the animals. This protein has been identified with the recently described cytoskeletal protein adducin on the following bases: the protein binds calmodulin (CaM) and protein kinase C (PKc) in a Ca2+ dependent way. It also binds phosphatidylserine, is the substrate of exogenous PKc, and finally it is purified by high salt extraction of Triton-X100 insoluble erythrocyte cytoskeletons followed by affinity chromatography on CaM-sepharose. Using this antibody the isolation from a mouse spleen library, the characterization and sequencing of a partial cDNA clone coding for this protein has been carried out. In conclusion adducin may be considered a very useful tool to test the hypothesis that the cellular differences between MHS and MNS may be caused by a difference in a membrane skeleton protein.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajh/2.4.229DOI Listing

Publication Analysis

Top Keywords

membrane skeleton
16
milan hypertensive
8
hypertensive strain
8
strain mns
8
protein
8
difference membrane
8
cellular differences
8
rats immunized
8
ghost membrane
8
skeleton extracts
8

Similar Publications

Background: The complement system is locally activated after joint injuries and leads to the deposition of the terminal complement complex (TCC). Sublytic TCC deposition is associated with phenotypical alterations of human articular chondrocytes (hAC) and enhanced release of inflammatory cytokines. Chronic inflammation is a known driver of chondrosenescence in osteoarthritis (OA).

View Article and Find Full Text PDF

Purpose Of Review: Rheumatoid arthritis (RA) is a complex autoimmune disease characterized by chronic inflammation of the synovial tissue, where T cells play a central role in pathogenesis. Recent research has identified T peripheral helper (Tph) cells as critical mediators of local B cell activation in inflamed tissues. This review synthesizes the latest advancements in our understanding the of the role of T cells in RA, from initiation to established disease.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to joint damage and physical dysfunction. The pathogenesis of RA is highly complex, involving genetic, epigenetic, immune, and metabolic factors, among others. Over the years, research has highlighted the importance of non-coding RNAs (ncRNAs) in regulating gene expression.

View Article and Find Full Text PDF

From Waste to Innovation: A Circular Economy Approach for Tissue Engineering by Transforming Human Bone Waste into Novel Collagen Membranes.

Biomolecules

January 2025

Department of Surgery and Specialties, Central University Hospital of Asturias, Faculty of Medicine and Health Sciences, University of Oviedo, 33011 Oviedo, Spain.

The aim of the circular economy is to treat waste as a valuable raw material, reintegrating it into the industrial economy and extending the lifecycle of subsequent products. Efforts to reduce the production of hard-to-recycle waste are becoming increasingly important to manufacturers, not only of consumer goods but also of specialized items that are difficult to manufacture, such as medical supplies, which have now become a priority for the European Union. The purpose of the study is to manufacture a novel human-purified type I collagen membrane from bone remnants typically discarded during the processing of cortico-cancellous bones in tissue banks and to evaluate its mechanical properties and effectiveness in regenerating bone-critical mandibular defects in rabbits.

View Article and Find Full Text PDF

Introduction: Implantation of minced cartilage is a one-step-procedure that leads to satisfactory results in osteochondral defects.

Material And Methods: A retrospective review was performed on a consecutive cohort of patients that received minced cartilage with fibrin (MCF), minced cartilage with membrane and fibrin (MCMF) and minced cartilage with the "AutoCart"-procedure (MCAC) between January 2019 and December 2023. Radiological outcome parameters were evaluated via Magnet-Resonance-Tomography (MRI) within one year using Ankle-Osteoarthritis-Scoring-System (AOSS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!