The Pdgfrb-Cre line has been used as a tool to specifically target pericytes and vascular smooth muscle cells. Recent studies showed additional targeting of cardiac and mesenteric lymphatic endothelial cells (LECs) by the Pdgfrb-Cre transgene. In the heart, this was suggested to provide evidence for a previously unknown nonvenous source of LECs originating from yolk sac (YS) hemogenic endothelium (HemEC). Here we show that Pdgfrb-Cre does not, however, target YS HemEC or YS-derived erythro-myeloid progenitors (EMPs). Instead, a high proportion of ECs in embryonic blood vessels of multiple organs, as well as venous-derived LECs were targeted. Assessment of temporal Cre activity using the R26-mTmG double reporter suggested recent occurrence of Pdgfrb-Cre recombination in both blood and lymphatic ECs. It thus cannot be excluded that Pdgfrb-Cre mediated targeting of LECs is due to de novo expression of the Pdgfrb-Cre transgene or their previously established venous endothelial origin. Importantly, Pdgfrb-Cre targeting of LECs does not provide evidence for YS HemEC origin of the lymphatic vasculature. Our results highlight the need for careful interpretation of lineage tracing using constitutive Cre lines that cannot discriminate active from historical expression. The early vascular targeting by the Pdgfrb-Cre also warrants consideration for its use in studies of mural cells. genesis 54:350-358, 2016. © 2016 The Authors. Genesis Published by Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021155 | PMC |
http://dx.doi.org/10.1002/dvg.22939 | DOI Listing |
Clin Transl Med
January 2024
Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Radiotherapy is the main treatment modality for thoracic tumours, but it may induce pulmonary fibrosis. Currently, the pathogenesis of radiation-induced pulmonary fibrosis (RIPF) is unclear, and effective treatments are lacking. Transforming growth factor beta 1 (TGFβ1) plays a central role in RIPF.
View Article and Find Full Text PDFiScience
May 2023
Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Interfaculty Centre (CIMIC), University of Muenster, 48149 Muenster, Germany.
Germinal center (GC) formation and antibody production in lymph node follicles require coordinated interactions between B-cells, T-cells and dendritic cells (DCs), orchestrated by the extracellular matrix-rich reticular fiber (RF) network. We describe a unique laminin 523-containing RF network around and between follicles that associates with PDGFrecβCCL19gp38 fibroblastic reticular cells (FRC). In the absence of FRC expression of laminin α5 (), pre-Tfh-cells, B-cells and DCs are displaced from follicle borders, correlating with fewer Tfh-cells and GC B-cells.
View Article and Find Full Text PDFDevelopment
May 2023
Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK.
Alveolar development and repair require tight spatiotemporal regulation of numerous signalling pathways that are influenced by chemical and mechanical stimuli. Mesenchymal cells play key roles in numerous developmental processes. Transforming growth factor-β (TGFβ) is essential for alveologenesis and lung repair, and the G protein α subunits Gαq and Gα11 (Gαq/11) transmit mechanical and chemical signals to activate TGFβ in epithelial cells.
View Article and Find Full Text PDFDev Biol
October 2022
Department of Ophthalmology, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA; F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA. Electronic address:
Heterozygous loss of function mutations in TWIST1 cause Saethre-Chotzen syndrome, which is characterized by craniosynostosis, facial asymmetry, ptosis, strabismus, and distinctive ear appearance. Individuals with syndromic craniosynostosis have high rates of strabismus and ptosis, but the underlying pathology is unknown. Some individuals with syndromic craniosynostosis have been noted to have absence of individual extraocular muscles or abnormal insertions of the extraocular muscles on the globe.
View Article and Find Full Text PDFJ Clin Invest
July 2022
Department of Surgery and.
Lymph node (LN) fibroblastic reticular cells (FRCs) define LN niches and regulate lymphocyte homeostasis through producing diverse extracellular matrix (ECM) components. We examined the role of ECM laminin α4 (Lama4) using FRC-Lama4 conditional KO Pdgfrb-Cre-/- × Lama4fl/fl mice. Single-cell RNA-sequencing (scRNA-Seq) data showed the promoter gene Pdgfrb was exclusively expressed in FRCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!