Multiple sclerosis is the most prevalent demyelinating disease of the central nervous system (CNS) and is histologically characterized by perivascular demyelination as well as neurodegeneration. While the degree of axonal damage is correlated with clinical disability, it is believed that remyelination can protect axons from degeneration and slow disease progression. Therefore, understanding the intricacies associated with myelination and remyelination may lead to therapeutics that can enhance the remyelination process and slow axon degeneration and loss of function. Ciliary neurotrophic factor (CNTF) family cytokines such as leukemia inhibitory factor (LIF) and interleukin 11 (IL-11) are known to promote oligodendrocyte maturation and remyelination in experimental models of demyelination. Because CNTF family member binding to the gp130 receptor results in activation of the JAK2/Stat3 pathway we investigated the necessity of oligodendroglial Stat3 in transducing the signal required for myelination and remyelination. We found that Stat3 activation in the CNS coincides with myelination during development. Stimulation of oligodendrocyte precursor cells (OPCs) with CNTF or LIF promoted OPC survival and final differentiation, which was completely abolished by pharmacologic blockade of Stat3 activation with JAK2 inhibitor. Similarly, genetic ablation of Stat3 in oligodendrocyte lineage cells prevented CNTF-induced OPC differentiation in culture. In vivo, while oligodendroglial Stat3 signaling appears to be dispensable for developmental CNS myelination, it is required for oligodendrocyte regeneration and efficient remyelination after toxin-induced focal demyelination in the adult brain. Our data suggest a critical function for oligodendroglial Stat3 signaling in myelin repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4962532 | PMC |
http://dx.doi.org/10.1016/j.nbd.2016.03.023 | DOI Listing |
Invest Ophthalmol Vis Sci
March 2019
Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States.
Purpose: We previously reported increased expression of cell proliferation and Jak-Stat pathway-related genes in chronic experimental glaucoma model optic nerve heads (ONH) with early, mild injury. Here, we confirm these observations by localizing, identifying, and quantifying ONH cellular proliferation and Jak-Stat pathway activation in this model.
Methods: Chronic intraocular pressure (IOP) elevation was achieved via outflow pathway sclerosis.
Neurobiol Dis
July 2016
Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, United States; Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States. Electronic address:
Multiple sclerosis is the most prevalent demyelinating disease of the central nervous system (CNS) and is histologically characterized by perivascular demyelination as well as neurodegeneration. While the degree of axonal damage is correlated with clinical disability, it is believed that remyelination can protect axons from degeneration and slow disease progression. Therefore, understanding the intricacies associated with myelination and remyelination may lead to therapeutics that can enhance the remyelination process and slow axon degeneration and loss of function.
View Article and Find Full Text PDFDev Cell
February 2016
Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China. Electronic address:
Establishment and maintenance of CNS glial cell identity ensures proper brain development and function, yet the epigenetic mechanisms underlying glial fate control remain poorly understood. Here, we show that the histone deacetylase Hdac3 controls oligodendrocyte-specification gene Olig2 expression and functions as a molecular switch for oligodendrocyte and astrocyte lineage determination. Hdac3 ablation leads to a significant increase of astrocytes with a concomitant loss of oligodendrocytes.
View Article and Find Full Text PDFNeuropathol Appl Neurobiol
April 2015
Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany; Centre for Systems Neuroscience Hannover, Hannover, Germany.
Aims: Insufficient oligodendroglial differentiation of oligodendroglial progenitor cells (OPCs) is suggested to be responsible for remyelination failure and astroglial scar formation in Theiler's murine encephalomyelitis (TME). The aim of the present study is to identify molecular key regulators of OPC differentiation in TME, and to dissect their mechanism of action in vitro.
Methods: TME virus (TMEV) infected SJL/J-mice were evaluated by rotarod analysis, histopathology, immunohistology and gene expression microarray analysis.
PLoS One
March 2010
Department of Neurology and Neurosciences, UH Cancer Center and the Graduate School of Biomedical Sciences, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America.
Background: In children born prematurely and those surviving cerebral ischemia there are white matter abnormalities that correlate with neurological dysfunction. Since this injury occurs in the immature brain, when the majority of subventricular zone (SVZ) cells generate white matter oligodendrocytes, we sought to study the effect this injury has on gliogenesis from the SVZ. We hypothesized that there is aberrant glial cell generation from the SVZ after neonatal hypoxia ischemia (H/I) that contributes to an increased astrogliogenesis with concomitant oligodendroglial insufficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!