Background: Nitric oxide (NO) and its derivatives play important roles in the cardiopulmonary transition upon birth and in other oxygen-sensitive developmental milestones. One mechanism for the coupling of oxygen sensing and signaling by NO species is via the formation of an S-nitrosothiol (SNO) moiety on hemoglobin (Hb, forming SNO-Hb) and its release from the red blood cell in hypoxia. Although SNO-Hb formed on adult-type Hb (HbA, forming SNO-HbA) has been documented in physiological and pathophysiological human states, the fetal variant, SNO-HbF, has thus far not been isolated or characterized in human blood.
Methods And Results: We developed a technique capable of separating Hbs A and F under conditions that preserve SNO. We then measured SNO-HbF in the blood of healthy and premature or otherwise ill neonates using the gold standard for SNO measurement, mercury-coupled photolysis-chemiluminescence. SNO-HbF levels were in the range of those previously reported for HbA in adults. We found that SNO-HbF was more abundant at earlier gestational age (<30 weeks), even when accounting for the absolute HbF level.
Conclusions: The ability to monitor SNO-HbF could provide new insights into fetal development and the perinatal transition, and has potential as a biomarker relevant to the management of neonatal diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4853255 | PMC |
http://dx.doi.org/10.1016/j.bbrc.2016.04.019 | DOI Listing |
Burns Trauma
December 2023
Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China.
Background: Keloids are aberrant dermal wound healing characterized by invasive growth, extracellular matrix deposition, cytokine overexpression and easy recurrence. Many factors have been implicated as pathological causes of keloids, particularly hyperactive inflammation, tension alignment and genetic predisposition. S-Nitrosylation (SNO), a unique form of protein modification, is associated with the local inflammatory response but its function in excessive fibrosis and keloid formation remains unknown.
View Article and Find Full Text PDFBackground Preeclampsia, a leading cause of maternal and fetal mortality and morbidity, is characterized by an increase in S-nitrosylated proteins and reactive oxygen species, suggesting a pathophysiologic role for dysregulation in nitrosylation and nitrosative stress. Methods and Results Here, we show that mice lacking S-nitrosoglutathione reductase (), a denitrosylase regulating protein S-nitrosylation, exhibit a preeclampsia phenotype, including hypertension, proteinuria, renal pathology, cardiac concentric hypertrophy, decreased placental vascularization, and fetal growth retardation. Reactive oxygen species, NO, and peroxynitrite levels are elevated.
View Article and Find Full Text PDFReprod Sci
April 2022
Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, China.
Extravillous cytotrophoblast (EVCT) is responsible for trophoblast invasion, which is important during placentation. Dysregulation of the process leads to pregnancy complications. S-nitrosylation of proteins is associated with cell invasion in many cell types.
View Article and Find Full Text PDFExp Cell Res
November 2017
Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84, Lund, Sweden. Electronic address:
Ascorbate-induced release of heparan sulfate from S-nitrosylated heparan sulfate proteoglycan glypican-1 takes place in endosomes. Heparan sulfate penetrates the membrane and is transported to the nucleus. This process is dependent on copper and on expression and processing of the amyloid precursor protein.
View Article and Find Full Text PDFOxid Med Cell Longev
May 2017
Department of Obstetrics and Gynecology, Puerta del Mar University Hospital, Cádiz, Spain.
Dysregulation of NO production is implicated in pregnancy-related diseases, including gestational diabetes mellitus (GDM). The role of NO and its placental targets in GDM pregnancies has yet to be determined. S-Nitrosylation is the NO-derived posttranslational protein modification that can modulate biological functions by forming NO-derived complexes with longer half-life, termed S-nitrosothiol (SNO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!