Triacylglycerol (TAG), a major source of biodiesel production, accumulates in nitrogen-starved Chlamydomonas reinhardtii. However, the metabolic pathway of starch-to-TAG conversion remains elusive because an enzyme that affects the starch degradation is unknown. Here, we isolated a new class of mutant bgal1, which expressed an overaccumulation of starch granules and defective photosynthetic growth. The bgal1 was a null mutant of a previously uncharacterized β-galactosidase-like gene (Cre02.g119700), which decreased total β-galactosidase activity 40% of the wild type. Upon nitrogen starvation, the bgal1 mutant showed decreased TAG accumulation mainly due to the reduced flux of de novo TAG biosynthesis evidenced by increased unsaturation of fatty acid composition in TAG and reduced TAG accumulation by additional supplementation of acetate to the culture media. Metabolomic analysis of the bgal1 mutant showed significantly reduced levels of metabolites following the hydrolysis of starch and substrates for TAG accumulation, whereas metabolites in TCA cycle were unaffected. Upon nitrogen starvation, while levels of glucose 6-phosphate, fructose 6-phosphate and acetyl-CoA remained lower, most of the other metabolites in glycolysis were increased but those in the TCA cycle were decreased, supporting TAG accumulation. We suggest that BGAL1 may be involved in the degradation of starch, which affects TAG accumulation in nitrogen-starved C. reinhardtii. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbalip.2016.04.001 | DOI Listing |
Redox Biol
January 2025
School of Molecular Biosciences, University of Glasgow, G12 8QQ, UK. Electronic address:
Mitochondria are major sites of reactive oxygen species (ROS) production within cells. ROS are important signalling molecules, but excessive production can cause cellular damage and dysfunction. It is therefore crucial to accurately determine when, how and where ROS are produced within mitochondria.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
Background: The 3-hydroxybutyrate dehydrogenase 1 (BDH1) mainly participates in the regulation of milk fat synthesis and ketone body synthesis in mammary epithelial cells. In our previous study, BDH1 was identified as a key candidate gene regulating lipid metabolism in mammary glands of dairy goats by RNA-seq. This study aimed to investigate the effect of BDH1 on lipid metabolism in mammary epithelial cells of dairy goats (GMECs).
View Article and Find Full Text PDFBiol Cell
January 2025
INBIOP (Instituto de Biociencias de la Patagonia), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina.
Actinobacteria belonging to Mycobacterium and Rhodococcus genera are able to synthesize and intracellularly accumulate variable amounts of triacylglycerols (TAG) in the form of lipid droplets (LDs). The lipid storage capacity of LDs in cells is controlled by the balance between lipogenesis and lipolysis. The growth of LDs in bacterial cells may be directly promoted by TAG biosynthesis, whereas TAG degradation might result in the reduction of LD sizes and lipid storage capacity.
View Article and Find Full Text PDFPlant Mol Biol
January 2025
College of Life Sciences, Northwest A & F University, Xi'an, 710000, China.
Triacylglycerol (TAG) is a major component of plant-neutral lipids. Diacylglycerol acyltransferase 2 (DGAT2) plays an important role in plant oil accumulation by catalyzing the final step of the Kennedy pathway. In this study, ten DGAT2 sequences were originating from different oil crops into the TAG-deficient yeast strain H1246, to compare their enzyme activity of oil synthesis and filter out potential amino acid residue sites for directed evolution.
View Article and Find Full Text PDFPathophysiology
January 2025
Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is associated with cardiometabolic risk. Although studies have shown that estradiol positively contributes to energy metabolism via estrogen receptor alpha (ERα), its role specifically in the liver is not defined. Therefore, this study aimed to evaluate the effects of ERα overexpression, specifically in the liver in mice fed a high-fat diet (HFD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!