In the present study we analyze the effect of seed treatment by a range of nano-TiO2 concentrations on the growth of Arabidopsis thaliana plants, on the vitamin E content and the expression of its biosynthetic genes, as well as activity of antioxidant enzymes and lipid peroxidation. To conduct the mechanistic analysis of nano-TiO2 on plants growth and antioxidant status we applied nanoparticles concentrations that are much higher than those reported in the environment. We find that as the concentration of nano-TiO2 increases, the biomass, and chlorophyll content in 5-week-old Arabidopsis thaliana plants decrease in a concentration dependent manner. In opposite, higher nano-TiO2 concentration enhanced root growth. Our results indicate that a high concentration of nano-TiO2 induces symptoms of toxicity and elevates the antioxidant level. We also find that the expression levels of tocopherol biosynthetic genes were either down- or upregulated in response to nano-TiO2. Thermoluminescence analysis shows that higher nano-TiO2 concentrations cause lipid peroxidation. To the best of our knowledge, this is the first report concerning the effect of nano-TiO2 on vitamin E status in plants. We conclude that nano-TiO2 affects the antioxidant response in Arabidopsis thaliana plants. This could be an effect of a changes in vitamin E gene expression that is diminished under lower tested nano-TiO2 concentrations and elevated under 1000 μg/ml.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2016.03.026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!