We have investigated whether the greater ability of forskolin to activate adenylate cyclase (EC 4.6.1.1) from rat heart compared with rat lung is due to interactions between G-proteins and catalytic units, isoforms of catalytic units or membrane-protein interactions. Interactions between Gs and catalytic units were found to be similar in both tissues with 10 microM Gpp(NH)p increasing activity up to 5-fold. While MnCl2 increased the response of the lung enzyme to forskolin, it reduced the response of the cardiac enzyme and uncoupled Gs from the cardiac catalytic units indicating that Gs interactions potentiate the response to forskolin. After enzyme solubilisation with n-octyl-beta-D-glucopyranoside, the response to forskolin was identical in heart and lung whether assayed with magnesium or manganese chloride, and not significantly different from the heart membrane enzyme. Overall, the results show that the relatively poor response of lung adenylate cyclase to forskolin is due to specific inhibitory interactions between the enzyme and lung membrane constituents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-2952(89)90253-0DOI Listing

Publication Analysis

Top Keywords

catalytic units
16
adenylate cyclase
12
rat heart
8
heart lung
8
lung adenylate
8
membrane-protein interactions
8
response lung
8
response forskolin
8
lung
6
interactions
6

Similar Publications

Reductive sulfinylation by nucleophilic chain isomerization of sulfonylpyridinium.

Nat Commun

January 2025

Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, China.

Sulfur-containing units are fundamental components widely found in bioactive compounds, prompting notable efforts toward developing synthetic methodologies for incorporating sulfur functionality into organic precursors. The synthesis of sulfinate esters and sulfinamides has garnered significant interest owing to their immense potential for applications, especially in drug development. However, most existing synthetic protocols suffer from some limitations.

View Article and Find Full Text PDF

Selective Recycling of Mixed Polyesters via Heterogeneous Photothermal Catalysis.

Adv Mater

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China.

The selective recycling of mixed plastic wastes with similar structural units is challenging. While heterogeneous catalysis shows potential for selective recycling, challenges such as complex mass transfer at multiphase interfaces and unclear catalytic mechanisms have slowed progress. In this study, a breakthrough in recycling mixed polyester wastes is introduced using heterogeneous photothermal catalysis.

View Article and Find Full Text PDF

Acylation stands as a fundamental process in both biological pathways and synthetic chemical reactions, with acylated saccharides and their derivatives holding diverse applications ranging from bioactive agents to synthetic building blocks. A longstanding objective in organic synthesis has been the site-selective acylation of saccharides without extensive pre-protection of alcohol units. In this study, we demonstrate that by simply altering the chirality of N-heterocyclic carbene (NHC) organic catalysts, the site-selectivity of saccharide acylation reactions can be effectively modulated.

View Article and Find Full Text PDF

General (hetero)polyaryl amine synthesis via multicomponent cycloaromatization of amines.

Nat Commun

January 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.

(Hetero)polyaryl amines are extensively prevalent in pharmaceuticals, fine chemicals, and materials but the intricate and varied nature of their structures severely restricts their synthesis. Here, we present a selective multicomponent cycloaromatization of structurally and functionally diverse amine substrates for the general and modular synthesis of (hetero)polyaryl amines through copper(I)-catalysis. This strategy directly constructs a remarkable range of amino group-functionalized (hetero)polyaryl frameworks (194 examples), including naphthalene, binaphthalene, phenanthren, benzothiophene, dibenzothiophene, benzofuran, dibenzofuran, quinoline, isoquinoline, quinazoline, and others, which are challenging or impossible to obtain using alternative methods.

View Article and Find Full Text PDF

Copper and Silver Trispyrazolylborate-Phosphinoazide Complexes: Synthesis, Characterization, and Nitrene Generation.

Inorg Chem

January 2025

Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007 Huelva, Spain.

Phosphinoazide complexes of the composition TpM-L (M = Cu, Ag, and L = 2-azido-1,3-bis(2,6-diisopropylphenyl)-2,3-dihydro-1-1,3,2-diazaphosphole) have been synthesized and structurally characterized. Their thermal decomposition led to cyclodiphosphazenes as a result of the metal-mediated coupling of two nitrene units in a process that takes place in both a stoichiometric and catalytic manner. Experimental data have allowed proposing a mechanistic pathway for this new transformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!