Extracellular Regulation of Bone Morphogenetic Protein Activity by the Microfibril Component Fibrillin-1.

J Biol Chem

From the Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931 Cologne, Germany,; the Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Street 21, 50931 Cologne, Germany. Electronic address:

Published: June 2016

Since the discovery of bone morphogenetic proteins (BMPs) as pluripotent cytokines extractable from bone matrix, it has been speculated how targeting of BMPs to the extracellular matrix (ECM) modulates their bioavailability. Understanding these processes is crucial for elucidating pathomechanisms of connective tissue disorders characterized by ECM deficiency and growth factor dysregulation. Here, we provide evidence for a new BMP targeting and sequestration mechanism that is controlled by the ECM molecule fibrillin-1. We present the nanoscale structure of the BMP-7 prodomain-growth factor complex using electron microscopy, small angle x-ray scattering, and circular dichroism spectroscopy, showing that it assumes an open V-like structure when it is bioactive. However, upon binding to fibrillin-1, the BMP-7 complex is rendered into a closed ring shape, which also confers latency to the growth factor, as demonstrated by bioactivity measurements. BMP-7 prodomain variants were used to map the critical epitopes for prodomain-growth factor and prodomain-prodomain binding. Together, these data show that upon prodomain binding to fibrillin-1, the BMP-7 complex undergoes a conformational change, which denies access of BMP receptors to the growth factor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933460PMC
http://dx.doi.org/10.1074/jbc.M115.704734DOI Listing

Publication Analysis

Top Keywords

growth factor
12
bone morphogenetic
8
prodomain-growth factor
8
binding fibrillin-1
8
fibrillin-1 bmp-7
8
bmp-7 complex
8
factor
5
extracellular regulation
4
regulation bone
4
morphogenetic protein
4

Similar Publications

Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.

View Article and Find Full Text PDF

Personalized Nanovaccine Based on STING-Activating Nanocarrier for Robust Cancer Immunotherapy.

ACS Nano

January 2025

Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.

Tumor-specific T cells play a vital role in potent antitumor immunity. However, their efficacy is severely affected by the spatiotemporal orchestration of antigen-presentation as well as the innate immune response in dendritic cells (DCs). Herein, we develop a minimalist nanovaccine that exploits a dual immunofunctional polymeric nanoplatform (DIPNP) to encapsulate ovalbumin (OVA) via electrostatic interaction when the nanocarrier serves as both STING agonist and immune adjuvant in DCs.

View Article and Find Full Text PDF

Objective: Neuropsychiatric symptoms (NPS) are considered diagnostic and prognostic indicators of dementia and are attributable to neurodegenerative processes. Little is known about the prognostic value of early NPS on executive functioning (EF) decline in Alzheimer's disease and related dementias (ADRD). We examined whether baseline NPS predicted the rate of executive function (EF) decline among older adults with ADRD.

View Article and Find Full Text PDF

Background: The progression of diabetic kidney disease (DKD) affects the patient's kidney glomeruli and tubules, whose normal functioning is essential for maintaining normal calcium (Ca) and phosphorus (P) metabolism in the body. The risk of developing osteoporosis (OP) in patients with DKD increases with the aggravation of the disease, including a higher risk of fractures, which not only affects the quality of life of patients but also increases the risk of death.

Aim: To analyze the risk factors for the development of OP in patients with DKD and their correlation with Ca-P metabolic indices, fibroblast growth factor 23 (FGF23), and Klotho.

View Article and Find Full Text PDF

Congenital hypogonadotropic hypogonadism (CHH) can cause delayed secondary sexual characteristics and contribute to juvenile osteoporosis, with multiple causative genes having been reported. We treated a 27-year-old man diagnosed with central hypogonadism, presenting with delayed secondary sexual characteristics and juvenile osteoporosis, using bone resorption inhibitors and testosterone therapy. Genetic testing revealed missense variants both in the fibroblast growth factor receptor 1 () and gonadotropin-releasing hormone receptor () genes, a combination that has not been previously reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!