Protein phosphatase 4 catalytic subunit (PP4C) has been identified to be overexpressed in various solid cancers. However, to date, the role of PP4C in glioma remains elusive. In the present study, we aimed to detect PP4C expression in glioma patients and explore its function in glioma and prognostic significance in patients with glioma. The expression levels of PP4C mRNA and protein in 30 glioma tissue specimens and 10 non-cancerous brain tissue specimens were detected by qRT-PCR and Western blot analysis. Moreover, immunohistochemistry was performed to assess PP4C expression in 120 glioma patients. The effects of siRNA-mediated PP4C silencing on the proliferation, migration, and invasion of U251 and U87 glioma cells were assessed. We found that PP4C was upregulated in glioma tissue at both mRNA and protein levels compared with non-cancerous brain tissue. Univariate and multivariate analyses indicated that high PP4C expression was an independent prognostic factor for poor survival of glioma patients. Knockdown of PP4C reduced the proliferation, migration, and invasion of U251 and U87 cells. In conclusion, our findings suggest that PP4C plays an oncogenic role in glioma development and progression and might serve as a prognostic biomarker as well as a potential therapeutic target for glioma.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13277-016-5054-6DOI Listing

Publication Analysis

Top Keywords

glioma
13
pp4c expression
12
glioma patients
12
pp4c
10
protein phosphatase
8
phosphatase catalytic
8
catalytic subunit
8
mrna protein
8
glioma tissue
8
tissue specimens
8

Similar Publications

Objective: This study aims to develop a dual-ligand-modified targeted drug delivery system by integrating photosensitizers and chemotherapeutic drugs to enhance anti-glioma effects. The system is designed to overcome the blood-brain barrier (BBB) that hinders effective drug delivery, increase drug accumulation in glioma cells, and thereby enhance therapeutic efficacy.

Methods: Liposomes were prepared using the film dispersion-ammonium sulfate gradient technique, co-loading the photosensitizer indocyanine green (ICG) and the chemotherapeutic drug mitoxantrone (MTO).

View Article and Find Full Text PDF

Glioblastoma IDH wild type (GBM IDH wt) has a poor prognosis and a strongly associated with inflammatory processes. Inflammatory molecules generate positive feedback with tumor cells fueling tumor growth as well as recruitment of immune cells that promote aggressiveness. Although the role of many inflammatory molecules is well known, there are many macromolecules, such as the S100A proteins, whose role is only now beginning to be established.

View Article and Find Full Text PDF

Identifying new substances that could potentially be used for tumor therapy and the precise analysis of their spectrum of action requires models that are as similar as possible to the tumor present in the patient. Traditionally, two-dimensional (2D) cell cultures are used. However, these only resemble solid tumors to a limited extent.

View Article and Find Full Text PDF

Knockdown of HOXD13 in Oral Squamous Cell Carcinoma Inhibited its Proliferation, Migration, and Influenced Fatty Acid Metabolism.

J Cancer

January 2025

Department of Oral and Maxillofacial Surgery, School of Stomatology, Hebei Medical University, Hebei Technology Innovation Center of Oral Health, Key Laboratory of Stomatology and Clinical Research Centre for Oral Diseases, Hebei Province, Shijiazhuang, 050017, China.

HOXD13, a member of the homeobox gene family, plays a critical role in developmental processes and has been implicated in various malignancies, including pancreatic cancer and glioma. However, its role in oral squamous cell carcinoma (OSCC) remains poorly understood. This study aimed to elucidate the potential of HOXD13 as a diagnostic biomarker and therapeutic target for OSCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!