A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of an intense water column mixing (0-1500 m) on prokaryotic diversity and activities during an open-ocean convection event in the NW Mediterranean Sea. | LitMetric

AI Article Synopsis

  • The deep convection event in the NW Mediterranean Sea (2010-2011) caused significant mixing of prokaryotic communities across a depth of 0-1500 m, leading to a dominance of typical surface Bacteria.
  • Statistical analyses showed that physical turbulence alone couldn't fully explain the changes in community distribution; it worked alongside factors like organic matter to shape these dynamics.
  • Post-event, there was a noticeable boost in prokaryotic abundance and production, but a decrease in certain enzymatic activities, indicating an enhanced turnover of organic matter and a rapid recovery of community structure just days after the event.

Article Abstract

Open-ocean convection is a fundamental process for thermohaline circulation and biogeochemical cycles that causes spectacular mixing of the water column. Here, we tested how much the depth-stratified prokaryotic communities were influenced by such an event, and also by the following re-stratification. The deep convection event (0-1500 m) that occurred in winter 2010-2011 in the NW Mediterranean Sea resulted in a homogenization of the prokaryotic communities over the entire convective cell, resulting in the predominance of typical surface Bacteria, such as Oceanospirillale and Flavobacteriales. Statistical analysis together with numerical simulation of vertical homogenization evidenced that physical turbulence only was not enough to explain the new distribution of the communities, but acted in synergy with other parameters such as exported particulate and dissolved organic matters. The convection also stimulated prokaryotic abundance (+21%) and heterotrophic production (+43%) over the 0-1500 m convective cell, and resulted in a decline of cell-specific extracellular enzymatic activities (-67%), thus suggesting an intensification of the labile organic matter turnover during the event. The rapid re-stratification of the prokaryotic diversity and activities in the intermediate layer 5 days after the intense mixing indicated a marked resilience of the communities, apart from the residual deep mixed water patch.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.13324DOI Listing

Publication Analysis

Top Keywords

water column
8
prokaryotic diversity
8
diversity activities
8
open-ocean convection
8
convection event
8
mediterranean sea
8
prokaryotic communities
8
convective cell
8
prokaryotic
5
impact intense
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!