Phase behaviour of self-assembled monolayers controlled by tuning physisorbed and chemisorbed states: A lattice-model view.

J Chem Phys

Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom.

Published: April 2016

The self-assembly of molecules on surfaces into 2D structures is important for the bottom-up fabrication of functional nanomaterials, and the self-assembled structure depends on the interplay between molecule-molecule interactions and molecule-surface interactions. Halogenated benzene derivatives on platinum have been shown to have two distinct adsorption states: a physisorbed state and a chemisorbed state, and the interplay between the two can be expected to have a profound effect on the self-assembly and phase behaviour of these systems. We developed a lattice model that explicitly includes both adsorption states, with representative interactions parameterised using density functional theory calculations. This model was used in Monte Carlo simulations to investigate pattern formation of hexahalogenated benzene molecules on the platinum surface. Molecules that prefer the physisorbed state were found to self-assemble with ease, depending on the interactions between physisorbed molecules. In contrast, molecules that preferentially chemisorb tend to get arrested in disordered phases. However, changing the interactions between chemisorbed and physisorbed molecules affects the phase behaviour. We propose functionalising molecules in order to tune their adsorption states, as an innovative way to control monolayer structure, leading to a promising avenue for directed assembly of novel 2D structures.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4944936DOI Listing

Publication Analysis

Top Keywords

phase behaviour
12
adsorption states
12
physisorbed state
8
physisorbed molecules
8
molecules
7
physisorbed
5
interactions
5
behaviour self-assembled
4
self-assembled monolayers
4
monolayers controlled
4

Similar Publications

Knee kinematics during gait in patients with discoid lateral meniscus: a systematic review.

Minerva Pediatr (Torino)

January 2025

Transalpine Center of Pediatric Sports Medicine and Surgery, University of Milano-Bicocca, Monza, Monza-Brianza, Italy.

Introduction: The aim of this study was to evaluate the difference between symptomatic discoid lateral meniscus (DLM) and healthy knees in terms of gait analysis.

Evidence Acquisition: A systematic review was conducted from the electronic databases PubMed/MEDLINE, EMBASE and Scopus. The review was performed on studies that reported data on kinematics, gait analysis, biomechanics in discoid lateral meniscus, before and after surgery.

View Article and Find Full Text PDF

The composition conversion in block copolymer induced by external stimuli such as light and pH is an effective strategy to trigger the disassembly of vesicles experimentally. Based on this strategy, the disassembly behavior of the ABA triblock copolymer vesicle induced by the composition conversion from B block to C block was studied using Monte Carlo simulation. In this study, a part of the B block in the ABA triblock copolymer was converted to the new block C with weaker hydrophobicity, forming the ABCA tetrablock copolymer.

View Article and Find Full Text PDF

Context: To address the severe fuel crisis and environmental pollution, the use of lightweight metal materials, such as AZ alloy, represents an optimal solution. This study investigates the mechanical behavior and deformation mechanism of AZ alloys under uniaxial compressive using molecular dynamics (MD) simulations. The influence of various compositions, grain sizes (GSs), and temperatures on the compressive stress, the ultimate compressive strength (UCS), compressive yield stress (CYS), Young's modulus (E), shear strain, phase transformation, dislocation distribution, and total deformation length is thoroughly examined.

View Article and Find Full Text PDF

Brazilian soils have distinctive characteristics to European and North American soils which are typically used to investigate pesticide fate. This study aimed to compare soil-water partition coefficient (K), reversibility of adsorption and degradation half-life (DT) of 5 pesticides covering a wide range of physico-chemical properties in contrasting Brazilian soils (Argissolo, Gleissolo, Latossolo and Neossolo) and a temperate (UK) alfisol soil, and to study their relationship with soil OM, clay and expandable clay content, CEC and pH. In addition, we used a novel laboratory test to evaluate sorption reversibility, the 3-Phase Assay (3PA).

View Article and Find Full Text PDF

Janus particles (JPs), initially introduced as soft matter, have evolved into a distinctive class of materials that set them apart from traditional surfactants, dispersants, and block copolymers. This mini-review examines the similarities and differences between JPs and their molecular counterparts to elucidate the unique properties of JPs. Key studies on the assembly behavior of JPs in bulk phases and at interfaces are reviewed, highlighting their unique ability to form diverse, complex structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!