We present a molecular dynamics simulation study that focuses on the formation and growth of nanoscale droplets inside polymer networks. Droplet formation and growth are investigated by the liquid-vapor phase separation of a dilute Lennard-Jones (LJ) fluid inside regularly crosslinked, polymer networks with varying mesh sizes. In a polymer network with small mesh sizes, droplet formation can be suppressed, the extent of which is dependent on the attraction strength between the LJ particles. When droplets form in a polymer network with intermediate mesh sizes, subsequent growth is significantly slower when compared with that in bulk without a polymer network. Interestingly, droplet growth beyond the initial nucleation stage occurs by different mechanisms depending on the mesh size: droplets grow mainly by diffusion and coalescence inside polymer networks with large mesh sizes (as observed in bulk), whereas Ostwald ripening becomes a more dominant mechanism for droplet growth for small mesh sizes. The analysis of droplet trajectories clearly reveals the obstruction effect of the polymer network on the movement of growing droplets, which leads to Ostwald ripening of droplets. This study suggests how polymer networks can be used to control the growth of nanoscale droplets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4944965 | DOI Listing |
Front Biosci (Landmark Ed)
November 2024
Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China.
Background: Aneuploidy is crucial yet under-explored in cancer pathogenesis. Specifically, the involvement of brain expressed X-linked gene 4 () in microtubule formation has been identified as a potential aneuploidy mechanism. Nevertheless, 's comprehensive impact on aneuploidy incidence across different cancer types remains unexplored.
View Article and Find Full Text PDF3D Print Addit Manuf
December 2024
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong.
Bioprinting has emerged as a powerful manufacturing platform for tissue engineering, enabling the fabrication of 3D living structures by assembling living cells, biological molecules, and biomaterials into these structures. Among various biomaterials, hydrogels have been increasingly used in developing bioinks suitable for 3D bioprinting for diverse human body tissues and organs. In particular, hydrogel blends combining gelatin and gelatin methacryloyl (GelMA; "GG hydrogels") receive significant attention for 3D bioprinting owing to their many advantages, such as excellent biocompatibility, biodegradability, intrinsic bioactive groups, and polymer networks that combine the thermoresponsive gelation feature of gelatin and chemically crosslinkable attribute of GelMA.
View Article and Find Full Text PDFBiomater Transl
September 2024
Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan Province, China.
The treatment and repair of bone tissue damage and loss due to infection, tumours, and trauma are major challenges in clinical practice. Artificial bone scaffolds offer a safer, simpler, and more feasible alternative to bone transplantation, serving to fill bone defects and promote bone tissue regeneration. Ideally, these scaffolds should possess osteoconductive, osteoinductive, and osseointegrative properties.
View Article and Find Full Text PDFBiomacromolecules
December 2024
Department of Chemical Engineering, University of Patras, Patras 26504, Greece.
We report on 3D-printable polymer networks based on the combination of modified alginate-based polymer blends; two alginate polymers were prepared, namely, a thermoresponsive polymer grafted with P(NIPAM--NtBAM)-NH copolymer chains and a second polymer modified with diol/pH-sensitive 3-aminophenylboronic acid. The gelation properties were determined by the hydrophobic association of the thermosensitive chains and the formation of boronate esters. At a mixing ratio of 70/30 wt % of the thermo/diol-responsive polymers, the semi-interpenetrating network exhibited an optimum storage modulus ranging from ca.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
The development of functional hydrogel dressings with robust mechanical properties has posed a significant challenge in expediting the healing process of MRSA-infected wounds. To address this, a composite hydrogel, comprising carboxylated soybean cellulose nanocrystals (CNCs), poly(N-isopropyl acrylamide) (PNIPAM), dimethyl diallyl ammonium chloride (PDADMAC), and kaolin (CN/P-K) was synthesized. CNCs served to stabilize the interpenetrating polymer networks of PNIPAM and PDADMAC through hydrogen bonding and electrostatic interactions, respectively, while the kaolin interlayer improved the material toughness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!