Concrete is by far the world's most common construction material. Modern concrete is a mixture of industrial pozzolanic cement formulations and aggregate fillers. The former acts as the glue or binder in the final inorganic composite; however, when exposed to a fire the degree of concrete damage is often difficult to evaluate nondestructively. Fourier transform infrared (FT-IR) spectroscopy through techniques such as transmission, attenuated total reflectance, and diffuse reflectance have been rarely used to evaluate thermally damaged concrete. In this paper, we report on a study assessing the thermal damage of concrete via the use of a nondestructive handheld FT-IR with a diffuse reflectance sample interface. In situ measurements can be made on actual damaged areas, without the need for sample preparation. Separate multivariate models were developed to determine the equivalent maximal temperature endured for three common industrial concrete formulations. The concrete mixtures were successfully modeled displaying high predictive power as well as good specificity. This has potential uses in forensic investigation and remediation services particularly for fires in buildings.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0003702816638306DOI Listing

Publication Analysis

Top Keywords

nondestructive handheld
8
fourier transform
8
transform infrared
8
infrared ft-ir
8
concrete
8
diffuse reflectance
8
handheld fourier
4
ft-ir analysis
4
analysis spectroscopic
4
spectroscopic changes
4

Similar Publications

Grape seed extract (GSE), one of the world's bestselling dietary supplements, is prone to frequent adulteration with chemically similar compounds. These frauds can go unnoticed within the supply chain due to the use of unspecific standard analytical methods for quality control. This research aims to develop a near-infrared spectroscopy (NIRS) method for the rapid and non-destructive quantitative evaluation of GSE powder in the presence of multiple additives.

View Article and Find Full Text PDF

Noninvasive Optical Sensing of Aging and Diet Preferences Using Raman Spectroscopy.

Anal Chem

January 2025

Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States.

Effective dietary strategies and interventions for monitoring dietary exposures require accurate and noninvasive methods to understand how diet modulates health and risk of obesity; advances in technology are transforming the landscape and enabling more specific tailored approaches to nutritional guidance. This study explores the use of Raman spectroscopy (RS), a noninvasive and nondestructive analytical technique, to identify changes in the mice skin in response to constant dietary exposures. We found that RS is highly accurate to determine body composition as a result of habitual dietary patterns, specifically Vegan, Typical American, and Ketogenic diets, all very common in the US context.

View Article and Find Full Text PDF

Recent advancements in novel fiber-coupled and portable terahertz (THz) spectroscopic imaging technology have accelerated applications in nondestructive testing (NDT). Although the polarization information of THz waves can play a critical role in material characterization, there are few demonstrations of polarization-resolved THz imaging as an NDT modality due to the deficiency of such polarimetric imaging devices. In this paper, we have inspected industrial carbon fiber composites using a portable and handheld imaging scanner in which the THz polarizations of two orthogonal channels are simultaneously captured by two photoconductive antennas.

View Article and Find Full Text PDF

Remote sensing is a valuable tool in precision agriculture due to its spatial and temporal coverage, non-destructive method of data collection, and cost-effectiveness. In this study, we measured the canopy reflectance of potato ( L.) crops on a plant-by-plant basis with a handheld spectrometer instrument.

View Article and Find Full Text PDF

Watermelons are in high demand for their juicy texture and sweetness, which is linked to their soluble solids content (SSC). Traditionally, watermelons have been sold as whole fruits. However, the decline in the mean size of households and the very large size of the fruits, together with high prices, mainly at the beginning of the season, mean that supermarkets now sell them as half fruits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!