Manganese oxides are promising pseudocapacitve materials for achieving both high power and energy densities in pseudocapacitors. However, it remains a great challenge to develop MnO2 -based high-performance electrodes due to their low electrical conductance and poor stability. Here we show that MnO2 nanowires anchored on electrochemically modified graphite foil (EMGF) have a high areal capacitance of 167 mF cm(-2) at a discharge current density of 0.2 mA cm(-2) and a high capacitance retention after 5000 charge/discharge cycles (115 %), which are among the best values reported for any MnO2 -based hybrid structures. The EMGF support can also be recycled and the newly deposited MnO2 -based hybrids retain similarly high performance. These results demonstrate the successful preparation of pseudocapacitors with high capacity and cycling stability, which may open a new opportunity towards a sustainable and environmentally friendly method of utilizing electrochemical energy storage devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201600024 | DOI Listing |
Heliyon
January 2025
Department of Chemical Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, Johannesburg, South Africa.
Semiconductor metal oxide gas sensors are widely used to detect ethanol vapours, commonly used in industrial productions, road safety detection, and solvent production; however, they operate at extremely high temperatures. In this work, we present manganese dioxide nanorods (MnO NRs) prepared via hydrothermal synthetic route, carbon soot (CNPs) prepared via pyrolysis of lighthouse candle, and poly-4-vinylpyridine (P4VP) composite for the detection of ethanol vapour at room temperature. MnO, CNPs, P4VP, and MnO NRs-CNPs-P4VP composite were characterised using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Department of Chemistry, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, 100084 Beijing, China. Electronic address:
The integration of reactive oxygen species (ROS) related photodynamic therapy (PDT) with the strategy of reshaping the tumor microenvironment (TME) has emerged as a potential approach for nanodiagnostic and therapeutic interventions. However, the therapeutic efficacy based on ROS treatments may be hindered by intracellular antioxidants such as glutathione (GSH) and tumor hypoxia. To address these challenges, a nanoplatform based on GSH-responsive multifunctional porphyrinic metal-organic framework (PCN-224@Au@MnO@HA, PAMH) was proposed.
View Article and Find Full Text PDFMolecules
December 2024
Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
Manganese dioxide (MnO) shows great potential in the field of electrochemical performance. But its poor conductivity, easy dissolution in electrolytes and undesirable ionic accessibility hinder its application. The construction of mesoporous polypyrrole/manganese dioxide (PPy/MnO) composites can effectively alleviate these problems.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China. Electronic address:
J Hazard Mater
January 2025
Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!