Background & Aims: Core 1- and core 3-derived mucin-type O-linked oligosaccharides (O-glycans) are major components of the colonic mucus layer. Defective forms of colonic O-glycans, such as the Thomsen-nouveau (Tn) antigen, frequently are observed in patients with ulcerative colitis and colorectal cancer, but it is not clear if they contribute to their pathogenesis. We investigated whether and how impaired O-glycosylation contributes to the development of colitis-associated colorectal cancer using mice lacking intestinal core 1- and core 3-derived O-glycans.
Methods: We generated mice that lack core 1- and core 3-derived intestinal O-glycans (DKO mice) and analyzed them, along with mice that singly lack intestinal epithelial core 1 O-glycans (IEC C1galt1(-/-) mice) or core 3 O-glycans (C3Gnt(-/-) mice). Intestinal tissues were collected at different time points and analyzed for levels of mucin and Tn antigen, development of colitis, and tumor formation using imaging, quantitative polymerase chain reaction, immunoblot, and enzyme-linked immunosorbent assay techniques. We also used cellular and genetic approaches, as well as intestinal microbiota depletion, to identify inflammatory mediators and pathways that contribute to disease in DKO and wild-type littermates (controls).
Results: Intestinal tissues from DKO mice contained higher levels of Tn antigen and had more severe spontaneous chronic colitis than tissues from IEC C1galt1(-/-) mice, whereas spontaneous colitis was absent in C3GnT(-/-) and control mice. IEC C1galt1(-/-) mice and DKO mice developed spontaneous colorectal tumors, although the onset of tumors in the DKO mice occurred earlier (age, 8-9 months) than that in IEC C1galt1(-/-) mice (15 months old). Antibiotic depletion of the microbiota did not cause loss of Tn antigen but did reduce the development of colitis and cancer formation in DKO mice. Colon tissues from DKO mice, but not control mice, contained active forms of caspase 1 and increased caspase 11, which were reduced after antibiotic administration. Supernatants from colon tissues of DKO mice contained increased levels of interleukin-1β and interleukin-18, compared with those from control mice. Disruption of the caspase 1 and caspase 11 genes in DKO mice (DKO/Casp1/11(-/-) mice) decreased the development of colitis and cancer, characterized by reduced colonic thickening, hyperplasia, inflammatory infiltrate, and tumors compared with DKO mice.
Conclusions: Impaired expression of O-glycans causes colonic mucus barrier breach and subsequent microbiota-mediated activation of caspase 1-dependent inflammasomes in colonic epithelial cells of mice. These processes could contribute to colitis-associated colon cancer in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5068133 | PMC |
http://dx.doi.org/10.1053/j.gastro.2016.03.039 | DOI Listing |
Mol Metab
January 2025
Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA; Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA 91010, USA. Electronic address:
Objective: Loss of functional β-cell mass is a major cause of diabetes. Thus, identifying regulators of β-cell health is crucial for treating this disease. The In this study, we assessed the regulation of Lgr4 in islets, and the role of LGR4 and LGR4/RANK stoichiometry in β-cell health under basal and stress-induced conditions, in vitro and in vivo.
View Article and Find Full Text PDFBone Res
January 2025
Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
In Vivo
December 2024
Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan;
Background/aim: Gangliosides regulate bone formation and resorption. Bone formation is reduced in mice lacking ganglioside GM2/GD2 synthase due to a decrease in osteoblasts. However, the effects of the loss of complex gangliosides by the deletion of both GM2/GD2 and GD3 synthases are unknown.
View Article and Find Full Text PDFAm J Transplant
December 2024
The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Department of Surgery, Medical University of South Carolina, Charleston, SC 29425. Electronic address:
As important immune regulatory cells, whether innate lymphoid cells (ILCs) are involved in liver transplantation (LT) remains unclear. In a murine orthotopic LT model, we dissected roles of ILCs in liver ischemia-reperfusion injury (IRI). Wild type (WT) grafts suffered significantly higher IRI in Rag2-γc double knockout (DKO) than Rag2 KO recipients, in association with downregulation of group 1 ILCs genes, including IFN-γ.
View Article and Find Full Text PDFHepatol Commun
January 2025
Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan.
Background: Wild-type (WT) mice fed a conventional high-fat/high-sucrose diet (HFHSD) rarely develop metabolic dysfunction-associated steatohepatitis (MASH) with HCC. Because mouse bile acid (BA) is highly hydrophilic, we hypothesized that making it hydrophobic would lead to MASH with HCC.
Methods: Eleven-week-old WT and Cyp2a12/Cyp2c70 double knockout (DKO) mice were divided into two groups, including one which was fed a normal chow diet, and one which was fed an HFHSD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!