Nowadays composite scaffolds based on synthetic and natural biomaterials have got attention to increase healing of non-union bone fractures. To this end, different aspects of collagen sponge incorporated with poly(glycolic acid) (PGA) fiber were investigated in this study. Collagen solution (6.33 mg/mL) with PGA fibers (collagen/fiber ratio [w/w]: 4.22, 2.11, 1.06, 0.52) was freeze-dried, followed by dehydrothermal cross-linking to obtain collagen sponge incorporating PGA fibers. Properties of scaffold for cell viability, proliferation, and differentiation of mesenchymal stem cells (MSCs) were evaluated. Scanning electron microscopy showed that collagen sponge exhibited an interconnected pore structure with an average pore size of 190 μm, irrespective of PGA fiber incorporation. The collagen-PGA sponge was superior to the original collagen sponge in terms of the initial attachment, proliferation rate, and osteogenic differentiation of the bone marrow-MSCs (BM-MSC). The shrinkage of sponges during cell culture was significantly suppressed by fiber incorporation. Incorporation of PGA fiber is a simple and promising way to reinforce collagen sponge without impairing biocompatibility. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2020-2028, 2016.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.35736DOI Listing

Publication Analysis

Top Keywords

collagen sponge
20
pga fiber
12
pga fibers
8
fiber incorporation
8
collagen
6
sponge
6
pga
5
pga-incorporated collagen
4
collagen biodegradable
4
biodegradable composite
4

Similar Publications

Long noncoding RNAs may function as competitive endogenous RNAs by sponging microRNAs, thereby contributing to the progression of diabetic nephropathy. In this study, a potential diabetic nephropathy-related long noncoding-microRNA-mRNA axis, Gm4419-miR-455-3p-, was predicted using bioinformatics methods. To verify the role of the Gm4419-miR-455-3p- axis in diabetic nephropathy, an high glucose-induced mesangial cell model was established.

View Article and Find Full Text PDF

Burn wounds are challenging to treat due to considerable tissue damage and fluid loss. Creating wound dressings from natural and biological materials makes it possible to treat wounds and promote rapid epithelialization to speed healing and restore skin function. As a result, the ability of a collagen scaffold (Col) made from rainbow trout (Oncorhynchus mykiss) and putative bioactive phytochemical components from a Sargassum glaucescens (S.

View Article and Find Full Text PDF

The aim was to explore the efficiency of Tideglusib in bone tissue healing by carrying it with different scaffolds on rat calvarial lesions. Twentyfour male Dawley rats were utilized. Two bone defects of 5 mm in diameter were formed (n = 8).

View Article and Find Full Text PDF

Introduction: Following tooth extraction, there is comparatively more bone loss at the buccal aspect at 3 months of healing, which may result in 56% bone loss due to resorption of the bucco-facial ridge contour. In the socket shield technique, a tooth is planned for extraction in such a way that the tooth is sectioned in two halves, a palatal section is removed and the facial part is retained.

Materials And Methods: Twenty-six sites, i.

View Article and Find Full Text PDF

A Recombinant Human Collagen and RADA-16 Fusion Protein Promotes Hemostasis and Rapid Wound Healing.

ACS Appl Bio Mater

December 2024

Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China.

In this study, we designed a fusion protein, rhCR, by combining human collagen with the self-assembling peptide RADA-16 using genetic engineering technology. The rhCR protein was successfully expressed in . The rhCR can self-assemble into a three-dimensional nanofiber network under physiological conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!