Financial toxicity in cancer care.

J Community Support Oncol

Section of Hematology/Oncology, Department of Medicine, The University of Chicago Medicine; Chicago, Illinois, USA.

Published: March 2016

The cost of cancer care is increasing, with important implications for the delivery of high-quality, patent-centered care. In the clinical setting, patents and physicians express a desire to discuss out-of-pocket costs. Nevertheless, both groups feel inadequately prepared to participate in these discussions, and perhaps not surprisingly, the integration of these discussions into clinical practice seems to be the exception rather than the rule. The resulting neglect of financial issues has the potential to cause unnecessary suffering for oncology patents. In this paper, we review the most relevant literature on financial toxicity in cancer care. In addition, we discuss potential predictors of financial toxicity, and the recent development of instruments to help clinicians and researchers quantify financial burden.

Download full-text PDF

Source
http://dx.doi.org/10.12788/jcso.0239DOI Listing

Publication Analysis

Top Keywords

financial toxicity
12
cancer care
12
toxicity cancer
8
financial
5
care
4
care cost
4
cost cancer
4
care increasing
4
increasing implications
4
implications delivery
4

Similar Publications

AVP-GPT2: A Transformer-Powered Platform for De Novo Generation, Screening, and Explanation of Antiviral Peptides.

Viruses

December 2024

Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd., Beijing 100176, China.

Human respiratory syncytial virus (RSV) remains a significant global health threat, particularly for vulnerable populations. Despite extensive research, effective antiviral therapies are still limited. To address this urgent need, we present AVP-GPT2, a deep-learning model that significantly outperforms its predecessor, AVP-GPT, in designing and screening antiviral peptides.

View Article and Find Full Text PDF

Exploring the Chemopreventive Potential of Methanolic Extract in Colorectal Cancer Induced by Azoxymethane in Mice.

Pharmaceuticals (Basel)

December 2024

Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.

Colorectal cancer (CRC) remains a major global health burden, necessitating innovative preventive approaches. (), known for its extensive pharmacological properties, has shown potential in cancer therapy. This study investigates the chemopreventive efficacy of methanolic extract of (MEA) in an azoxymethane (AOM)-induced murine model of CRC, with a focus on its antioxidant, biomarker modulation, and pro-apoptotic activities.

View Article and Find Full Text PDF

Antimicrobial Efficacy of Trifluoro-Anilines Against Species.

Int J Mol Sci

January 2025

School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.

are naturally present in marine ecosystems and are commonly allied with live seafood. species frequently cause foodborne infections, with recently becoming a significant contributor to foodborne illness outbreaks. In response, aniline and 68 of its aniline derivatives were studied due to their antibacterial effects targeting and .

View Article and Find Full Text PDF

In silico and in vitro assessments of the mutagenicity of the azilsartan photoproduct.

Mutat Res Genet Toxicol Environ Mutagen

January 2025

Research & Development, Kongo Chemical Co., Ltd, Himata, Toyama 9300912, Japan.

Photodegradation of azilsartan yields a phenanthridine derivative (APP). We suspected that APP could be a DNA-reactive substance, since many phenanthridine derivatives are mutagenic. In silico quantitative structure-activity relationship analysis indicated potential mutagenicity of APP, due to DNA reactivity at the 6-aminophenanthridine moiety.

View Article and Find Full Text PDF

A critical review on arsenic and antimony adsorption and transformation on mineral facets.

J Environ Sci (China)

July 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Arsenic (As) and antimony (Sb), with analogy structure, belong to VA group in the periodic table and pose a great public concern due to their potential carcinogenicity. The speciation distribution, migration and transformation, enrichment and retention, as well as bioavailability and toxicity of As and Sb are influenced by several environmental processes on mineral surfaces, including adsorption/desorption, coordination/precipitation, and oxidation/reduction. These interfacial reactions are influenced by the crystal facet of minerals with different atomic and electronic structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!