Cellular cytoskeletal systems play many pivotal roles in living organisms by controlling cell shape, division, and migration, which ultimately govern morphology, physiology, and functions of animals. Although the cytoskeletal systems are distinct and play different roles, there is growing evidence that these diverse cytoskeletal systems coordinate their functions with each other. This coordination between cytoskeletal systems, often termed cytoskeletal crosstalk, has been identified when the dynamic state of one individual system affects the other system. In this review, we briefly describe some well-established examples of crosstalk between cytoskeletal systems and then introduce a newly discovered form of crosstalk between the actin cytoskeleton and microtubule network that does not appear to directly alter polymerization or depolymerization of either system. The biological impact and possible significance of this post-polymerization crosstalk between actin and microtubules will be discussed in detail.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054736 | PMC |
http://dx.doi.org/10.1080/19490992.2016.1171428 | DOI Listing |
BMC Med Genomics
January 2025
Department of Surgery, Faculty of General of Medicine, Koya University, Koya, Kurdistan Region - F.R., KOY45, Iraq.
Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.
Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).
Environ Res
January 2025
Man-Technology-Environment Research Center (MTM), Örebro University, Örebro SE-701 82, Sweden.
As the volume of plastic waste from electrical and electronic equipment (WEEE) continues to rise, a significant portion is disposed of in the environment, with only a small fraction being recycled. Both disposal and recycling pose unknown health risks that require immediate attention. Existing knowledge of WEEE plastic toxicity is limited and mostly relies on epidemiological data and association studies, with few insights into the underlying toxicity mechanisms.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
Methamphetamine is a highly addictive stimulant known to cause neurotoxicity, cognitive deficits, and immune dysregulation in the brain. Despite significant research, the molecular mechanisms driving methamphetamine-induced neurotoxicity and glial cell dysfunction remain poorly understood. This study investigates how methamphetamine disrupts glial cell function and contributes to neurodevelopmental and neurodegenerative processes.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Immunology Laboratory (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico.
Sertraline, a selective serotonin reuptake inhibitor (SSRI), is commonly used to treat various psychiatric disorders such as depression and anxiety due to its ability to increase serotonin availability in the brain. Recent findings suggest that sertraline may also influence the expression of genes related to synaptic plasticity and neuronal signaling pathways. Alternative splicing, a process that allows a single gene to produce multiple protein isoforms, plays a crucial role in the regulation of neuronal functions and plasticity.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Experimental Medicine, University of Salento, Via Provinciale Lecce-Monteroni n. 165, 73100 Lecce, Italy.
Peripherin belongs to heterogeneous class III of intermediate filaments, and it is the only intermediate filament protein selectively expressed in the neurons of the peripheral nervous system. It has been previously discovered that peripherin interacts with proteins important for the endo-lysosomal system and for the transport to late endosomes and lysosomes, such as RAB7A and AP-3, although little is known about its role in the endocytic pathway. Here, we show that peripherin silencing affects lysosomal abundance but also positioning, causing the redistribution of lysosomes from the perinuclear area to the cell periphery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!