The inhibitory function of killer cell immunoglobulin-like receptors (KIR) that bind HLA-C and block activation of human natural killer (NK) cells is dependent on zinc. We report that zinc induced the assembly of soluble KIR into filamentous polymers, as detected by electron microscopy, which depolymerized after zinc chelation. Similar KIR filaments were isolated from lysates of cells treated with zinc, and membrane protrusions enriched in zinc were detected on whole cells by scanning electron microscopy and imaging mass spectrometry. Two independent mutations in the extracellular domain of KIR, away from the HLA-C binding site, impaired zinc-driven polymerization and inhibitory function. KIR filaments formed spontaneously, without the addition of zinc, at functional inhibitory immunological synapses of NK cells with HLA-C(+) cells. Adding to the recent paradigm of signal transduction through higher order molecular assemblies, zinc-induced polymerization of inhibitory KIR represents an unusual mode of signaling by a receptor at the cell surface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4826557PMC
http://dx.doi.org/10.1016/j.molcel.2016.03.009DOI Listing

Publication Analysis

Top Keywords

inhibitory function
12
zinc-induced polymerization
8
immunological synapses
8
electron microscopy
8
kir filaments
8
polymerization inhibitory
8
kir
6
zinc
6
inhibitory
5
cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!