Restraint training for awake functional brain scanning of rodents can cause long-lasting changes in pain and stress responses.

Pain

Laboratory of Pain and Integrative Neuroscience, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA.

Published: August 2016

With the increased interest in longitudinal brain imaging of awake rodents, it is important to understand both the short-term and long-term effects of restraint on sensory and emotional processing in the brain. To understand the effects of repeated restraint on pain behaviors and stress responses, we modeled a restraint protocol similar to those used to habituate rodents for magnetic resonance imaging scanning, and studied sensory sensitivity and stress hormone responses over 5 days. To uncover lasting effects of training, we also looked at responses to the formalin pain test 2 weeks later. We found that while restraint causes acute increases in the stress hormone corticosterone, it can also cause lasting reductions in nociceptive behavior in the formalin test, coupled with heightened corticosterone levels and increased activation of the "nociceptive" central nucleus of the amygdala, as seen by Fos protein expression. These results suggest that short-term repeated restraint, similar to that used to habituate rats for awake functional brain scanning, could potentially cause long-lasting changes in physiological and brain responses to pain stimuli that are stress-related, and therefore could potentially confound the functional activation patterns seen in awake rodents in response to pain stimuli.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4949008PMC
http://dx.doi.org/10.1097/j.pain.0000000000000579DOI Listing

Publication Analysis

Top Keywords

awake functional
8
functional brain
8
brain scanning
8
long-lasting changes
8
stress responses
8
awake rodents
8
repeated restraint
8
stress hormone
8
pain stimuli
8
restraint
6

Similar Publications

Localization of function within the brain and central nervous system is an essential aspect of clinical neuroscience. Classical descriptions of functional neuroanatomy provide a foundation for understanding the functional significance of identifiable anatomic structures. However, individuals exhibit substantial variation, particularly in the presence of disorders that alter tissue structure or impact function.

View Article and Find Full Text PDF

Background: Insomnia is a prevalent sleep disorder affecting millions worldwide, with significant impacts on daily functioning and quality of life. While traditionally assessed through subjective measures such as the Insomnia Severity Index (ISI), the advent of wearable technology has enabled continuous, objective sleep monitoring in natural environments. However, the relationship between subjective insomnia severity and objective sleep parameters remains unclear.

View Article and Find Full Text PDF

Purpose: Although insufficient sleep influences cognitive function and physical and mental health in adolescents, many still get less sleep than the recommended duration. Adolescent substance use, including alcohol and tobacco, influences sleep disturbance. However, sex differences in the relationship between substance use and sleep health have not been extensively studied.

View Article and Find Full Text PDF

Background: Supratentorial function-eloquent brain tumour surgeries challenge the balance between maximal tumour resection and preservation of neurological function. This study aims to evaluate the efficacy of preoperative and intraoperative mapping techniques on resection outcomes and post-operative deficits.

Methods: This systematic review and meta-analysis examined literature up to March 2023, sourced from PubMed, Embase, and Medline.

View Article and Find Full Text PDF

Significance: Functional brain imaging experiments in awake animals require meticulous monitoring of animal behavior to screen for spontaneous behavioral events. Although these events occur naturally, they can alter cell signaling and hemodynamic activity in the brain and confound functional brain imaging measurements.

Aim: We developed a centralized, user-friendly, and stand-alone platform that includes an animal fixation frame, compact peripheral sensors, and a portable data acquisition system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!