Cerium Photosensitizers: Structure-Function Relationships and Applications in Photocatalytic Aryl Coupling Reactions.

J Am Chem Soc

P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States.

Published: May 2016

Two complete mixed-ligand series of luminescent Ce(III) complexes with the general formulas [(Me3Si)2NC(N(i)Pr)2]xCe(III)[N(SiMe3)2]3-x (x = 0, 1-N; x = 1, 2-N, x = 2, 3-N; x = 3, 4) and [(Me3Si)2NC(N(i)Pr)2]xCe(III)(OAr)3-x (x = 0, 1-OAr; x = 1, 2-OAr, x = 2, 3-OAr; x = 3, 4) were developed, featuring photoluminescence quantum yields up to 0.81(2) and lifetimes to 117(1) ns. Although the 4f → 5d absorptive transitions for these complexes were all found at ca. 420 nm, their emission bands exhibited large Stokes shifts with maxima occurring at 553 nm for 1-N, 518 nm for 2-N, 508 nm for 3-N, and 459 nm for 4, featuring yellow, lime-green, green, and blue light, respectively. Combined time-dependent density functional theory (TD-DFT) calculations and spectroscopic studies suggested that the long-lived (2)D excited states of these complexes corresponded to singly occupied 5dz(2) orbitals. The observed difference in the Stokes shifts was attributed to the relaxation of excited states through vibrational processes facilitated by the ligands. The photochemistry of the sterically congested complex 4 was demonstrated by C-C bond forming reaction between 4-fluoroiodobenzene and benzene through an outer sphere electron transfer pathway, which expands the capabilities of cerium photosensitizers beyond our previous results that demonstrated inner sphere halogen atom abstraction reactivity by 1-N.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.6b02248DOI Listing

Publication Analysis

Top Keywords

cerium photosensitizers
8
stokes shifts
8
excited states
8
photosensitizers structure-function
4
structure-function relationships
4
relationships applications
4
applications photocatalytic
4
photocatalytic aryl
4
aryl coupling
4
coupling reactions
4

Similar Publications

Salinity is one of the predominant abiotic stressors that reduce plant growth, yield, and productivity. Ameliorating salt tolerance through nanotechnology is an efficient and reliable methodology for enhancing agricultural crops yield and quality. Nanoparticles enhance plant tolerance to salinity stress by facilitating reactive oxygen species detoxification and by reducing the ionic and osmotic stress effects on plants.

View Article and Find Full Text PDF

X-ray-induced photodynamic therapy (X-PDT) represents a promising new method of cancer treatment. A novel type of nanoscintillator based on cerium fluoride (CeF) nanoparticles (NPs) modified with flavin mononucleotide (FMN) has been proposed. A method for synthesizing CeF-FMN NPs has been developed, enabling the production of colloidal, spherical NPs with an approximate diameter of 100 nm, low polydispersity, and a high fluorescence quantum yield of 0.

View Article and Find Full Text PDF

Understanding the biokinetics of nanoparticles will support the identification of target organs for toxicological endpoints. We investigated the biokinetics of poorly soluble nanomaterials carbon black, multi-walled carbon nanotubes (MWCNT), cerium oxide (CeO), titanium dioxide (TiO), crystalline silica (SiO) in inhalation studies in rodents (the soluble amorphous silica was also included). By reviewing research papers on the inhalation of these substances, we collected physico-chemical data and elemental distribution to organs, urine, and feces.

View Article and Find Full Text PDF

This work aims to develop a bio-based fibrous material that is able to adsorb and degrade chemical and biological hazardous agents. Thus, cellulosic fabrics (flax) were functionalized with chitosan (CS) and poly(ethylene oxide) (PEO) electrospun nanofibers doped with titanium dioxide (TiO) and cerium dioxide (CeO) nanoparticles (NPs). The electrospray deposition of these NPs was also tested.

View Article and Find Full Text PDF

The field of nanotechnology has experienced exponential growth, with the unique properties of nanomaterials (NMs) being employed to enhance a wide range of products across diverse industrial sectors. This study examines the toxicity of metal- and carbon-based NMs, with a particular focus on titanium dioxide (TiO), zinc oxide (ZnO), silica (SiO), cerium oxide (CeO), silver (Ag), and multi-walled carbon nanotubes (MWCNTs). The potential health risks associated with increased human exposure to these NMs and their effect on the respiratory, gastrointestinal, dermal, and immune systems were evaluated using in vitro assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!