A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of synthetic light-chain antibodies as novel and potent HIV fusion inhibitors. | LitMetric

Development of synthetic light-chain antibodies as novel and potent HIV fusion inhibitors.

AIDS

aResearch Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy bInstituto de Medicina Molecular, School of Medicine, Universidade de Lisboa, Lisboa cISCSEM-Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, Monte de Caparica dCIISA-Interdisciplinary Centre of Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa eTechnophage, Lisboa, Portugal.

Published: July 2016

Objective: To develop a novel and potent fusion inhibitor of HIV infection based on a rational strategy for synthetic antibody library construction.

Design: The reduced molecular weight of single-domain antibodies (sdAbs) allows targeting of cryptic epitopes, the most conserved and critical ones in the context of HIV entry. Heavy-chain sdAbs from camelids are particularly suited for this type of epitope recognition because of the presence of long and flexible antigen-binding regions [complementary-determining regions (CDRs)].

Methods: We translated camelid CDR features to a rabbit light-chain variable domain (VL) and constructed a library of minimal antibody fragments with elongated CDRs. Additionally to elongation, CDRs' variability was restricted to binding favorable amino acids to potentiate the selection of high-affinity sdAbs. The synthetic library was screened against a conserved, hidden, and crucial-to-fusion sequence on the heptad-repeat 1 (HR1) region of the HIV-1 envelope glycoprotein.

Results: Two anti-HR1 VLs, named F63 and D104, strongly inhibited laboratory-adapted HIV-1 infectivity. F63 also inhibited infectivity of HIV-1 and HIV-2 primary isolates similarly to the Food and Drug Administration-approved fusion inhibitor T-20 and HIV-1 strains resistant to T-20. Moreover, epitope mapping of F63 revealed a novel target sequence within the highly conserved hydrophobic pocket of HR1. F63 was also capable of interacting with viral and cell lipid membrane models, a property previously associated with T-20's inhibitory mechanism.

Conclusion: In summary, to our best knowledge, we developed the first potent and broad VL sdAb fusion inhibitor of HIV infection. Our study also gives insights into engineering strategies that could be explored to enhance the development of antiviral drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1097/QAD.0000000000001108DOI Listing

Publication Analysis

Top Keywords

fusion inhibitor
12
novel potent
8
inhibitor hiv
8
hiv infection
8
development synthetic
4
synthetic light-chain
4
light-chain antibodies
4
antibodies novel
4
hiv
4
potent hiv
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!