First-Passage Time to Clear the Way for Receptor-Ligand Binding in a Crowded Environment.

Phys Rev Lett

Department of Mathematics, University of California, Irvine, 340 Rowland Hall, Irvine, California 92697, USA.

Published: March 2016

Certain biological reactions, such as receptor-ligand binding at cell-cell interfaces and macromolecules binding to biopolymers, require many smaller molecules crowding a reaction site to be cleared. Examples include the T-cell interface, a key player in immunological information processing. Diffusion sets a limit for such cavitation to occur spontaneously, thereby defining a time scale below which active mechanisms must take over. We consider N independent diffusing particles in a closed domain, containing a subregion with N_{0} particles, on average. We investigate the time until the subregion is empty, allowing a subsequent reaction to proceed. The first-passage time is computed using an efficient exact simulation algorithm and an asymptotic approximation in the limit that cavitation is rare. In this limit, we find that the mean first-passage time is subexponential, T∝e^{N_{0}}/N_{0}^{2}. For the case of T-cell receptors, we find that stochastic cavitation is exceedingly slow, 10^{9}  s at physiological densities; however, it can be accelerated to occur within 5 s with only a fourfold dilution.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.116.128101DOI Listing

Publication Analysis

Top Keywords

first-passage time
12
receptor-ligand binding
8
limit cavitation
8
time clear
4
clear receptor-ligand
4
binding crowded
4
crowded environment
4
environment biological
4
biological reactions
4
reactions receptor-ligand
4

Similar Publications

Reproducibility and Consistency of Isolation Protocols for Fibroblasts, Smooth Muscle Cells, and Epithelial Cells from the Human Vagina.

Cells

January 2025

Reproductive Biology Laboratory, Amsterdam UMC-Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.

(1) Background: For the reconstruction of a human vagina, various surgical procedures are available that are often associated with complications due to their failure to mimic the physiology of the human vagina. We recently developed a vascularized, organ-specific matrix from healthy human vaginal wall tissue with suitable biomechanical properties. A superior graft would require further extensive colonization with autologous vaginal cells to reduce complications upon implantation.

View Article and Find Full Text PDF

Random walks on scale-free flowers with stochastic resetting.

Chaos

January 2025

School of Mathematical Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China.

This study explores the impact of stochastic resetting on the random walk dynamics within scale-free (u,v)-flowers. Utilizing the generating function technique, we develop a recursive relationship for the generating function of the first passage time and establish a connection between the mean first passage time with and without resetting. Our investigation spans multiple scenarios, with the random walker starting from various positions and aiming to reach different target nodes, allowing us to identify the optimal resetting probability that minimizes the mean first passage time for each case.

View Article and Find Full Text PDF

Uncovering Dynamical Equations of Stochastic Decision Models Using Data-Driven SINDy Algorithm.

Neural Comput

January 2025

Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, BT48 7JL Derry-Londonderry, Northern Ireland, U.K.

Decision formation in perceptual decision making involves sensory evidence accumulation instantiated by the temporal integration of an internal decision variable toward some decision criterion or threshold, as described by sequential sampling theoretical models. The decision variable can be represented in the form of experimentally observable neural activities. Hence, elucidating the appropriate theoretical model becomes crucial to understanding the mechanisms underlying perceptual decision formation.

View Article and Find Full Text PDF

We consider a discrete-time Markovian random walk with resets on a connected undirected network. The resets, in which the walker is relocated to randomly chosen nodes, are governed by an independent discrete-time renewal process. Some nodes of the network are target nodes, and we focus on the statistics of first hitting of these nodes.

View Article and Find Full Text PDF

We present a procedure for enhanced sampling of molecular dynamics simulations through informed stochastic resetting. Many phenomena, such as protein folding and crystal nucleation, occur over time scales inaccessible in standard simulations. We recently showed that stochastic resetting can accelerate molecular simulations that exhibit broad transition time distributions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!