Environmental enrichment is a technique that may reduce the stress of nonhuman animals in captivity. Stress may interfere with normal behavioral expression and affect cognitive decision making. Noninvasive hormonal studies can provide important information about the stress statuses of animals. This study evaluated the effectiveness of different environmental enrichment treatments in the diminution of fecal glucocorticoid metabolites (stress indicators) of three captive maned wolves (Chrysocyon brachyurus). Correlations of the fecal glucocorticoid metabolite levels with expressed behaviors were also determined. Results showed that environmental enrichment reduced fecal glucocorticoid metabolite levels. Furthermore, interspecific and foraging enrichment items were most effective in reducing stress in two of the three wolves. No definite pattern was found between behavioral and physiological responses to stress. In conclusion, these behavioral and physiological data showed that maned wolves responded positively from an animal well being perspective to the enrichment items presented.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10888705.2016.1161512DOI Listing

Publication Analysis

Top Keywords

environmental enrichment
16
fecal glucocorticoid
16
glucocorticoid metabolites
8
captive maned
8
chrysocyon brachyurus
8
maned wolves
8
glucocorticoid metabolite
8
metabolite levels
8
enrichment items
8
behavioral physiological
8

Similar Publications

Multidrug resistance (MDR) infectious wounds are a major concern due to drug resistance, leading to increased patient morbidity. Lichenysin (LCN), a lipopeptide and biosurfactant obtained from certain strains of , has demonstrated an excellent antimicrobial property. The present study focuses on the fabrication and comprehensive evaluation of LCN-incorporated poly(vinyl alcohol) (PVA)/polycaprolactone (PCL)-based nanofiber scaffolds using an electrospinning technique as a potential wound healing biomaterial for the treatment of MDR infectious wounds in diabetic rats.

View Article and Find Full Text PDF

Background: Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant with significant risks to ecosystems and human health. Magnetic molecularly imprinted polymers (MIPs) provide a promising solution for selectively extracting PFOS from contaminated water. However, while bifunctional monomer imprinting improves the imprinting effect by introducing diverse functional groups, it can also increase non-specific adsorption.

View Article and Find Full Text PDF

The present study exami-ned bacteria that anaerobically degrade the aromatic compound, benzoate, and obtained enrichment cultures from marine sediments under illumination. The enrichment culture contained anoxygenic photosynthetic bacteria and non-photosynthetic bacteria. The photosynthetic strain PS1, a purple sulfur bacterium in the genus Marichromatium, was unable to utilize benzoate; however, when combined with the non-photosynthetic bacterial isolate, Marinobacterium sp.

View Article and Find Full Text PDF

Bidirectional electron transfer biofilms (BETB) could efficiently reduce nitrate without accumulating nitrite, representing a promising biological electrochemical denitrification technology. This study utilized iron phthalocyanine modified carbon felt (FePc-CF) to enrich electroactive bacteria, constructing a long-term stable FePc-BETB. Its nitrate removal rate reached 91%, far exceeding the traditional nitrate-reducing biocathode (45%) and Con-BETB (46%).

View Article and Find Full Text PDF

Pre-enrichment-free electrochemical detection of lead ions using functionalized tungsten oxide: Integration of surface functionalization and redox cycling mechanisms.

Talanta

March 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China. Electronic address:

Methods for electrochemical detection of heavy metal ions have garnered widespread attention due to their high sensitivity, ease of operation, low cost, and suitability for on-site detection. However, these methods typically require a pre-enrichment step to improve the detection limit and sensitivity, which increases operational complexity and introduces potential errors. In this study, tungsten oxide electrodes with various functional groups were prepared by electrodeposition and high-temperature annealing, utilizing the amphoteric properties of l-alanine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!