Macroalgae (seaweeds) are a promising feedstock for the production of third generation bioethanol, since they have high carbohydrate contents, contain little or no lignin and are available in abundance. However, seaweeds typically contain a more diverse array of monomeric sugars than are commonly present in feedstocks derived from lignocellulosic material which are currently used for bioethanol production. Hence, identification of a suitable fermentative microorganism that can utilise the principal sugars released from the hydrolysis of macroalgae remains a major objective. The present study used a phenotypic microarray technique to screen 24 different yeast strains for their ability to metabolise individual monosaccharides commonly found in seaweeds, as well as hydrolysates following an acid pre-treatment of five native UK seaweed species (, , , and ). Five strains of yeast (three spp, one sp and one sp) were selected and subsequently evaluated for bioethanol production during fermentation of the hydrolysates. Four out of the five selected strains converted these monomeric sugars into bioethanol, with the highest ethanol yield (13 g L) resulting from a fermentation using hydrolysate with YPS128. This study demonstrated the novel application of a phenotypic microarray technique to screen for yeast capable of metabolising sugars present in seaweed hydrolysates; however, metabolic activity did not always imply fermentative production of ethanol.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4789230 | PMC |
http://dx.doi.org/10.1007/s10811-015-0633-2 | DOI Listing |
BMC Genomics
January 2025
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China.
Background: Sugarcane is a crucial crop for both sugar and bioethanol production. The nobilization breeding and utilization of wild germplasm have significantly enhanced its productivity. However, the pollen sterility in Saccharum officinarum restricts its role to being a female parent in crosses with Saccharum spontaneum during nobilization breeding, resulting in a narrow genetic basis for modern sugarcane cultivars.
View Article and Find Full Text PDFPlanta
January 2025
Advanced Laboratory for Plant Genetic Engineering, Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, India.
This study seeks to improve the biomass extractability of Sorghum bicolor by targeting a critical enzyme, 4CL, through metabolic engineering of the lignin biosynthetic pathway at the post-transcriptional level. Sorghum bicolor L., a significant forage crop, offers a potential source of carbohydrate components for biofuel production.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India.
Cellulase was effectively immobilized onto an epoxy-bound chitosan-modified zinc metal-organic framework (epoxy/ZIF-8/CS/cellulase) support, yielding a conjugation rate of 0.64 ± 0.02 mg/cm2 and retaining 80.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran. Electronic address:
Cellulase is extensively used in the biorefinery of cellulosic materials to fermentable sugars in bioethanol production. Application of cellulase in the free form has disadvantages in enzyme wastage and low stability. The results of the present work showed these drawbacks can be solved by cellulase immobilization on functionalized FeO magnetic nanoparticles (MNPs) with reactive red 120 (RR120) as the affinity ligands.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
College of Materials Science and Engineering, National and Local Joint Engineering Research Center for Green Processing, Technology of Agricultural and Forestry Biomass, Central South University of Forestry and Technology, Changsha, 410004, China.
The directional migration of S-vacancy is beneficial to the separation of photogenerated carriers and the transition of electrons in semiconductors. In this study, Bi/BiS@carboxylic-cellulose (CC) photocatalyst with bionic chloroplast structure is obtained by electron beam irradiation to induce S-vacancy in BiS@CC. The results of CO photoreduction experiments demonstrate that the reduction rate of CO to CHOH by Bi/BiS@CC-450 samples is 10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!